UNCLASSIFIED

AD NUMBER ADB816506 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to DoD only; Administrative/Operational Use; 31 AUG 1949. Other requests shall be referred to Air Force Materiel Command, ATTN: MCREXM3, Wright-Patterson AFB, OH 45433-6503. Pre-dates formal DoD distribution statements. Treat as DoD only. **AUTHORITY** ASC AFMC ltr, 29 Jan 2010

Reproduction Quality Notice

This document is part of the Air Technical Index [ATI] collection. The ATI collection is over 50 years old and was imaged from roll film. The collection has deteriorated over time and is in poor condition. DTIC has reproduced the best available copy utilizing the most current imaging technology. ATI documents that are partially legible have been included in the DTIC collection due to their historical value.

If you are dissatisfied with this document, please feel free to contact our Directorate of User Services at [703] 767-9066/9068 or DSN 427-9066/9068.

Do Not Return This Document To DTIC

Reproduced by

CENTRAL AIR DOCUMENTS OFFICE

WRIGHT-PATTERSON AIR FORCE BASE - DAYTON.OHIO

The GOVERNMENT

IS ABSOLVED

FROM ANY LITIGATION WHICH MAY ENSUE FROM ANY INFRINGEMENT ON DOMESTIC OR FOREIGN PATENT RIGHTS WHICH MAY BE INVOLVED.

UNCLASSIFIED

First Progress Report Covering the Period May 18 to September 18, 1949 on
Research and Development on Titanium Alloys

Simmons, W. O.; Greenidge, C. T.; Craighead, C. M.; and others
Battelle Memorial Institute, Columbus, Ohio
1st
(Same) for AMC, Wright-Patterson Air Force Base, Dayton, Ohio

Aug* 49

Unclass.

U.S.

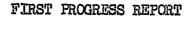
English

59

9 tables, diagr, graphs

(Same)

Progress is reported in the development of titanium alloys. During the period reported, titanium binary alloys of germanium and nickel were studied, as well as titanium-molybdenum and titanium-manganese ternary alloys. Carbon, copper, chromium, manganese, iron, and cobalt were added to the titanium-molybdenum binary alloys, and nitrogen, copper, molybdenum and cobalt were added to titanium-manganese alloys. The alloys were tested in both the as-hot-rolled temper and after aging the hot-rolled sheet four hours at 750°F. Tensile strengths and elongations for various alloys are listed. Some of the alloys were tested after solution heat treatment at 1600°F. Tests were also completed on "hot pressed" crucibles of tangaten carbide, titanium carbide, and zirconium carbide as refractories for melting titanium. Melts were made in graphic crucibles lines with tantalum carbide and tangsten boride.


Copies obtainable from CADO.

Titanium alloys

Materials (8)
Misc. Non-Ferrous Metals and Alloys (12)

USAF Contr. No. AF33(038)-3736

Air Documents Division, T-2
AMC, Wright Field
Microfilm No.
R3908 F

August 31, 1949

to

WRIGHT-PATTERSON AIR FORCE BASE DAYTON, OHIO

on

RESEARCH AND DEVELOPMENT ON TITANIUM ALLOYS

G-1261-13 Battelle

MEMORIAL INSTITUTE
505 King Avenue
COLUMBUS 1, OHIO

FORM 49

FIRST PROGRESS REPORT

COVERING THE PERIOD MAY 18 TO SEPTEMBER 18, 1949

on

RESEARCH AND DEVELOPMENT ON TITANIUM ALLOYS

Contract No. 33(038)-3736

to

WRIGHT-PATTERSON AIR FORCE BASE DAYTON, OHIO

BATTELLE MEMORIAL INSTITUTE
August 31, 1949

BATTELLE MEMORIAL INSTITUTE

INDUSTRIAL AND SCIENTIFIC RESEARCH

COLUMBUS 1, OHIO

September 16, 1949

AF 909 \$0 Wright-Patterson Air Force Base Service Area Building 258 Dayton, Ohio

Attention MCREXM3, Contract No. AF 33(038)-3736)

Gentlemen:

Enclosed are twenty-five (25) copies and one (1) reproducible of the first progress report prepared under Contract No. AF 33(038)-3736.

Part III of the Summary Report, dated July 30, 1949, under Contract W-33-038 ac-21229, describes the development of analytical methods and the study of refractories carried out during the period May 18, 1948, to May 18, 1949. In addition, it contains data obtained during the interval May 18, 1949, to July 30, 1949, on alloys which were in process at the expiration of the preceding contract, May 18, 1949. At the request of Mr. J. B. Johnson, this latter information obtained during the first two and a half months of the present contract was submitted in lieu of the first regular bimonthly progress report.

The attached report contains an account of the following:

- 1. A description of the alloy development work, including the data on alloys prepared during the period May 18, 1949, to September 18, 1949. Data obtained during this period on alloys already under study on May 18, 1949, are included in the above-mentioned Summary Report.
- The progress made during the period May 18, 1949, to September 18, 1949, on the development of analytical methods for oxygen in titanium.
- The results of the study during the period May 18, 1949, to September 18, 1949, on the development of refractories for holding molten titanium.

Wery truly yours,

M. Eastwood

L. W. Eastwood

LWE: ec Enc. (26)

FIRST PROGRESS REPORT COVERING THE PERIOD MAY 18 TO SEPTEMBER 18, 1949

on

RESEARCH AND DEVELOPMENT ON TITANIUM ALLOYS

Contract No. AF 33(038)-3736

· to

WRIGHT-PATTERSON AIR FORCE BASE DAYTON, OHIO

from

BATTELLE MEMORIAL INSTITUTE

August 31, 1949

SUMMARY

In the 4-month period covered by this report, May 18 to September 18, 1949, titanium binary alloys of germanium and nickel were studied. Also investigated were titanium-molybdenum and titanium-manganese ternary alloys. Additions of carbon, copper, chromium, manganese, iron, and cobalt were made to the titanium-molybdenum binary alloys and additions of nitrogen, copper, molybdenum, and cobalt were made to titanium-manganese alloys.

The alloys were tested in both the as-hot-rolled temper and after aging the hot-rolled sheet 4 hours at 750°F. The following alloys were found to have tensile strengths and elongations in the range of 156,000 to 180,000 p.s.i. and 5 to 11 per cent, respectively.

 Titanium - 5 per cent molybdenum base alloys with additions of 1 per cent copper, 2 per cent copper,
 1 per cent manganese, and 2 per cent iron.

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	3
ARC MELTING TITANIUM-BASE ALLOYS	3
EVALUATION OF EXPERIMENTAL TITANIUM-BASE ALLOYS	4
INVESTIGATION OF REFRACTORIES FOR MELTING TITANIUM	28
ANALYTICAL METHODS FOR TITANIUM-BASE ALLOYS	29
The Determination of Oxygen in Titanium by the Cl ₂ - CCl ₄ Method	29
The Analysis of Titanium for Oxygen by Vacuum-Fusion Methods	33
A Comparison of Oxygen Values Obtained by Three Modifications of the Vacuum-Fusion Method	34
Preparation of Standards	34
Methods of Analysis	35
Method A	35
Method B	35
Method C	36
Analytical Results	36
Vacuum-Fusion - Mass-Spectrograph Method of Determining Oxygen in Titamium	42
Apparatus	43
Experimental Procedure	46
Calculations	49
Experimental Results	53
FUTURE WORK	58

- 2. Titanium 3.5 per cent manganese base alloys with additions of 0.1 per cent nitrogen, 1.0 per cent cobalt, and 2.0 per cent cobalt.
- 3. Titanium 5 per cent manganese base alloys with additions of 0.1 per cent nitrogen, and 2.0 per cent cobalt.

Aging the hot-rolled sheet at 750°F. for 4 hours increased the tensile strength and hardness of some alloys without a serious reduction in elongation values, as shown in the following table.

Heat No.	Intended Composition, Per Cent	<u>Condition</u>	Tensile Strength, p.s.i.	tion, Per Cent Vickers in 1 In. Hardness
WH38	5 Mo, 1 Cu	As hot rolled Aged 4 hrs. 750°F.	171,700 180,300	5.5 298 5.0 327
WH182	3.5 Mo, 1 Mn	As hot rolled Aged 4 hrs. 750°F.	147,200 170,600	4.0 288 6.0 302
WH227	3.5 Mo, 1 Fe	As hot rolled Aged 4 hrs. 750°F.	167,500 175,400	6.0 285 5.0 317
WH166	7.5 Mn, 0.1 N	As hot rolled Aged 4 hrs. 750°F.	184,400 190,000	3.5 403 5.0 498
WH159	2.5 Mn, 0.2 N	As hot rolled Aged 4 hrs. 750°F.	134,400 152,900	5.5 272 6.5 272
WH151	3.5 Mn, 1.0 Co	As hot rolled Aged 4 hrs, 750°F.	166,700 201,800	6.0 297 3.0 285
WH150	2.5 Mn, 2.0 Co	As hot rolled Aged 4 hrs. 750°F.	143,600 176,700	10.0 262 6.0 307

Some of the alloys were tested after solution heat treatment at 1600°F., but the properties in this condition were not so good as those for the as-hot-rolled temper. Further testing of solution-heat-treated alloys does not appear justified.

Tests were completed on "hot pressed" crucibles of tungsten carbide, titanium carbide, and zirconium carbide as refractories for melting titanium. Melts were made in graphite crucibles lined with tantalum carbide and tungsten boride, but the examination of these melts has not been completed.

The determination of oxygen in titanium by the Cl_2 - CCl_4 method, three modifications of the vacuum-fusion technique, and the vacuum-fusion mass-spectrograph method has been investigated. None of these techniques, to date, has resulted in consistent and reproducible oxygen values.

INTRODUCTION

During the period, May 18 to September 18, 1949, covered in this report, the experimental program on titanium has continued. The phases of the work described in this report are as follows:

- 1. Arc melting titanium-base alloys.
- 2. Evaluation of experimental titanium-base alloys.
- 3. Investigation of refractories for melting titanium.
- 4. Analytical methods for titanium-base alloys.

ARC MELTING TITANIUM-BASE ALLOYS

(0. W. Simmons and C. T. Greenidge)

Approximately one hundred and forty 0.5-pound ingots were made and submitted for fabrication during the period May 18 to August 31. The

intended compositions of the ingots, on which the testing has been completed, are listed under the section on Evaluation of Experimental Titanium-Base Alloys.

In addition to the above alloys, two large ingots of Process A titanium were made at the request of Mr. J. B. Johnson. Heat Ti354, 11 pounds gross, and Heat Ti363, 8.5 pounds gross, were melted in the large arc-melting furnace. These ingots were scalped to 6 and 5.1 pounds, respectively, and shipped to Mr. E. A. Gee of E. I. du Pont de Nemours and Company. The analyses and hardnesses of the two ingots were as follows:

	-	Ingo	t T1354			Ingot	Ti363	
	C.8	N.%	W.%	Brinell	C.%	N. %	W.%	Brinell
Top	80.0	0.010	0.12	137	0.03	0,010	0.09	131
Middle	0.05	0.009	0.11	137	0.04	800.0	0.18	131
Bottom	0.04	0.013	0.12	137	0.06	0.007	0.19	131

EVALUATION OF EXPERIMENTAL TITANIUM-BASE ALLOYS

(C. M. Craighead, F. Fawn, and L. W. Eastwood)

The alloy evaluation work covered in the present bimonthly report has been directed toward the investigation of:

- Binary titanium-germanium alloys.
- 2. Binary titanium-nickel alloys.
- 3. Ternary titanium-molybdenum base alloys.
- 4. Ternary titanium-manganese base allows.

These alloys have been tested in both the as-hot-rolled condition and after aging the alloys in the as-hot-rolled temper for 4 hours at 750°F.

The data for the titanium-germanium and titanium-nickel binary alloys are shown in Tables 1 and 2. Figures 1 and 2 graphically illustrate the effects, respectively, of germanium and nickel on the tensile strength, elongation, and Vickers hardness of as-hot-rolled Process A titanium sheet.

The addition of 0.1 to 1.0 per cent germanium to Process A metal produced essentially no effect on the tensile strength, elongation, or Vickers hardness. Likewise, the titanium-germanium alloys were not responsive to solution or aging treatments.

Nickel increased the tensile strength of as-hot-rolled Process A titanium sheet to 120,000 p.s.i. at 10 per cent nickel, while the elongation decreased to 2 per cent, and the Vickers hardness increased to 300. Aging the as-hot-rolled titanium-nickel alloys for 4 hours at 750°F. produced no beneficial effect on the tensile properties. Solution heat treatment of the titanium-nickel alloys at temperatures ranging from 1450 to 1750°F. resulted in an increase in the Vickers hardness. The higher nickel alloys showed the greatest increase in hardness. The bend ductility of the binary titanium-nickel alloys either in the as-hot-rolled or heat-treated tempers was poor.

The present data do not justify further investigation of binary titanium-germanium or titanium-nickel alloys.

The effect of additions of carbon, copper, chromium, manganese, iron, cobalt, and nickel on the properties of titanium-molybdenum base alloys are shown in Tables 3 and 4. Figures 3 to 9 graphically illustrate the changes in tensile strength, elongation, and hardness resulting

PROPERTIES OF BINARY ALLOYS OF TITANIUM WITH GERMANIUM OR NICKEL PREPARED FROM PROCESS A METAL TABLE 1.

	-	As	fot Rolled	As Hot Rolled at 1450°F.(1)	(1)	H and	Hot Rolled a	led at 1450°F. Hrs. at 750°F.(2)	(2)	Hee	Heat Treated at 1600°F. (3)	at 1600°F.	3)
Heat No.	Intended Composition, \$	Tensile Strength, (4) p.s.i.	Elong., % in l Inch	VHN(5)	Minimum Bend Radius, (6) Inch	Tensile Strength, (4) p.s.i.		VHN(5)	Minimum Bend Radius, (6) Inch	Tensile Strength, (4) p.s.i.	Elong., % in l Inch	VHN(5)	Minimum Bend Radius, (6) Inch
					<u> Titanium - Germanium</u>	Germanium							
WH1.80 WH1.70	Unalloyed 0.10 Ge	83,000	20.5	193	3/32 3/64	84,700	19.0	188	3/16 1/16	92,900	14.5	181 194	3/16 3/32
WH169 WH168	0,50 Ge 1,0 Ge	77,400 83,000	16.5	206	3/16 3/16	88,400 90,000	18.5	202 208	1/16 3/32	80,400 86,000	17.5	203	3/16 3/16
					Titanium - 1	N1ckel							
WH242	Unalloyed	90,700	22.5	202	1/16	86,700	22.5	196	3/16				
#H246	20 N. W.	102,000	12,5	219	*/1	104,000	10 H	588 588 588	**/!<				
WH244	5.0 M	112,200		3%	>1/4*	117,700	7.5	38	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
WB241	7.5 Mi	120,000	2.5	566	# */ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	120,700	2.5	278	**/"				
##237 ##238	10.01 15.0 M	122,200	0 1 %	305	>1/4"" -	106,900	1.5	- 599	>1/4""				

5003

As hot rolled at 1450°F.

Hot-rolled sheet aged 4 hours at 750°F. in air and air cooled.

Heated in air 1/2 hour at 1600°F. and quenched in cold water.

Average of 2 longitudinal 14-gauge specimens, 3 inches long by
0.375 inch wide with a 0.250-inch-wide reduced section.

10-kg. load. Hardness at the center of the cross section of the
sheet 90° to the surface and to the rolling direction.

Minimum bend radius without cracking on a single longitudinal specimen
3 inches long by 0.5 inch wide. Tested with the surface skin present.

Sheet was too brittle to shear into specimens. 3 9

£**

Some ductility.
Very little ductility.

HEAT-TREATING AND AGING DATA FOR BINARY ALLOYS OF TITANIUM WITH GERMANIUM OR NICKEL PREPARED FROM PROCESS A METAL TABLE 2.

us After Indicated Treatment(2)	Heat Heat Heat Heat
T 1 2 T 1 2	Hoat Heat Heat Heat Heat Heat Heat Aged Treated Treate
Heat Heat Heat Treated Treated Treated . 1450°F. 1550°F. 1600°F. (5) (6) (7)	
lled Heat He ged Tree 1450°F° 155 (4) (5) (6)	
4	
As Hot Rolled 4 (3) 3/32 3/64 3/16	3/32 3/64 3/16
tt Heat ited Treated)°F. 1750°F.	
Heat Heat Treated Treated 1650°F. 1700°F. (8) (9)	
Heat He Trested Tre 1600°F. 165 (7) (8	
Heat Treated	
Heat	Treated 1450°F. (5)
As Hot Rolled	Aged A Hrs 750°F (4)
	As Hot Rolled (3)
	Intended Composition, %
	Heat No.

10-kg. load. Hardness at the center of the cross section of the sheet specimen 90° to the surface and to the rolling direction. Average of at least 5 readings. Minimum bend radius without cracking on a single longitudinal specimen 3 inches long by 0.5 inch wide. Tested with the surface skin present.

As hot rolled at 1450°F.

Hot-rolled sheet aged 4 hours at 750°F. in air and air cooled.

Heated in air 1/2 hour at 1550°F. and quenched in cold water.

Heated in air 1/2 hour at 1650°F. and quenched in cold water.

Heated in air 1/2 hour at 1650°F. and quenched in cold water.

Heated in air 1/2 hour at 1700°F. and quenched in cold water.

No tests were made. Sheet was surface and edge cracked. *w3206*

Some ductility.

Very little ductility

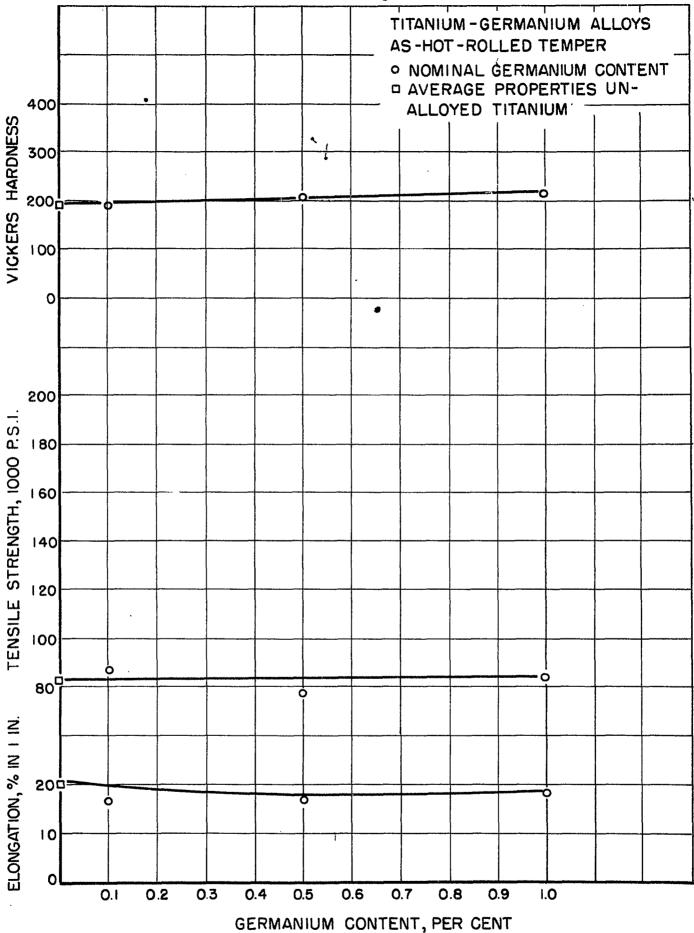


FIGURE 1. EFFECT OF GERMANIUM ON THE PROPERTIES OF AS-HOT-ROLLED PROCESS A TITANIUM BINARY ALLOY SHEET

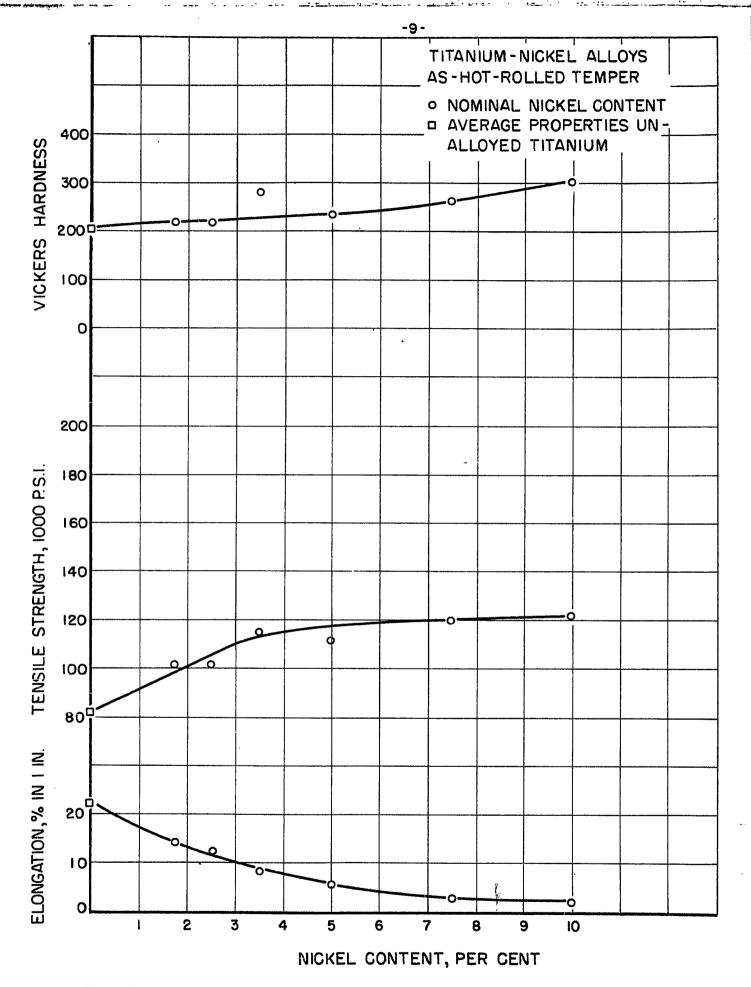


FIGURE 2. EFFECT OF NICKEL ON THE PROPERTIES OF AS-HOT-ROLLED PROCESS A TITANIUM BINARY ALLOY SHEET

TABLE 3. PROPERTIES OF TITANIUM-MOLYBDENUM ALLOYS WITH ADDITIONS OF CARBON, COPPER, CHROMIUM, MANGANESE, IRON, COBALT, OR NICKEL PREPARED FROM PROCESS A METAL

		The state of the s	The state of the s		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN					CHRISTIAN CONTRACTOR C			
Heat No.	Intended Composition, %	Tensile Strength, (4) p.m.i.	Elong., % in 1 Inch	(4) % in 1 Inch WHN(5)	Minimum Bend Radius, (6) Inch	Tensile Strength, (4) p.s.i.	Elong., % in 1 Inch	VHN(5)	Winimum Bend Radius, (6) Inch	Tensile Strength, (4) p.8.1.	Florg., f in 1 Inch	VHN (5)	Minimum Bend Radius, (6) Inch
					Titanium	- Wolybdenum - G	Carbon						
WH233 WH234 WH236 WH240	Unalloyed 2.5 Mo, 0.25 C 3.5 Mo, 0.25 C 5.0 Mo, 0.25 G	88,000 128,100 141,000 146,600	21.5 15.0 10.0 9.0	202 268 268 268 268	1/16 71/4* 71/4*	97,400 129,000 149,700 155,300	21.0 13.0 4.0 2.0	205 279 320	1/16 3/16 >1/4** \\\\				
						0.5% Carbon							
WH235 WH239 WH243	2.5 No, 0.50 C 3.5 No, 0.50 C 5.0 No, 0.50 C	143,200 143,200 149,400	7. 6.8 7.	282 279 294	>1/4* >1/4* · >1/4*	154,700 149,400 161,900	2.6.6 2.6.0	297 313 348	>1/4* >1/4* >1/4*				
			ŕ		Titanium	- Molybdenum - C	Copper						
#B206 #B213 #B42 #B38	Unalloyed 2.5 Mo, 1.0 Gu 3.5 Mo, 1.0 Gu 5.0 Mo, 1.0 Gu	90,400 130,000 140,000 171,700	00 00 00 00 00 00 00	204 264 281 298	3/16 3/16 >1/4* >1/4*	90,000 133,200 156,200 180,300	17. 6.0 5.0 0.0	199 263 304 327	3/16 >1/4* >1/4*				
						2.0% Copper							
WE212 WE209 WE1.71	2.5 No. 2.0 Gu 3.5 No. 2.0 Gu 5.0 No. 2.0 Gu	138,600 139,100 174,700	r ν, ν, νοο	290 279 315	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	145,800 154,100 178,000	2.4 w	305 301 338	******				
					Titanium -	- Molybdenum - Ch 1.0% Chromium	- Chromium						
WELSO WESOL	Unalloyed 2.5 Mo, 1.0 Gr 3.5 Mo, 1.0 Gr 5.0 Mo, 1.0 Gr	73,600 122,500 151,200 166,100	21.0 0.0 0.0 0.0 0.0	181 262 252 356	3/64 3/16 3/16 >1/4*	74,100 126,800 146,700 160,800	00 v v v	185 266 272 377	3/32 3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	67,900 130,700- 119,700 113,200	18 2,5,6,0 0,0,0	175 278 297 264	3/1/4* 3/1/6
	, see					2.0% Chromium							
WH195 WH198 WH204	2.5 %, 2.0 Gr 3.5 %, 2.0 Gr 5.0 %, 2.0 Gr	147,700 158,800 158,400	44 <i>w</i>	320 322 322	3/16 >1/4* >1/4*	154,800 178,500 167,900	4 w u n n o	315 324 361	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	125,400 122,000 106,100	0 m to	297 205 247	>1/4* >1/4* 3/16

-101-

TABLE 3. (Continued)

	Minimum Bend Radius, (6) Inch		****		73/32 3/16 3/16 1/4*		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				,		×××××		**** ****
			ヹヹヹ		<i>~</i> ੁੱ <i>~</i> ੁੱ		\(\alpha_\times\)								777 7
at 1600°	VHH(5)		283 283 283 283		189 327 281 281		35,73						# % % #	:	331 417
Heat Treated at 1600°F.(3)	Klong., \$ in 1 Inch		W W W		22.0 0.2 0.5 0.8		2,0 3,0 0,0						44444 2404		1.0
Hee	Tensile Strength, (4) p.8.1.		103,700 114,500 111,300		82,800 138,500 132,900 120,000		138,600 132,900 126,700						92,900 132,700 161,200 134,300		56,700 130,000 122,600
~]	Minimum Bend Radius, (6) Inch		>1/4* >1/4* >1/4*		3/32 3/16 >1/4* >1/4*		·3/16 >1/4* >1/4*		1/16 /1/4*** /1/4**		×1//**		3/16 3/16 >1/4* >1/4*		3/16 >1/4* >1/4*
t 1450°F.	VHN(5)		358 383 409		187 294 302 344		327 406 406		191 265 317 348		306 337 340		33%8	•	296 312 350
Hot Rolled at 1450°F.	Long., % in 1 Inch		2000 0000	nganese	28.05.05.05.05.05.05.05.05.05.05.05.05.05.		3°0 2°0 2°0	to,	21.0 3.5 2.5 2.5		4.0 3.5 3.5	Cobel t	19.0 7.0 2.5 3.0		5.5 3.0
Ho And	Tensile Strength, (4) p.s.i.	3,0% Chronium	166,000 190,900 193,300	Molybdenum - Menganese 1.0% Menganese	83,000 130,000 170,600 178,600	2.0% Manganege	149,400 161,700 168,800	Molybdenum - Iron 1.0% Iron	88,700 141,300 175,400 177,200	2.0% Iron	151,300 182,000 160,000	Kolybdemum - Col	84,700 133,400 150,400 182,500	2.0% Cobalt	150,900 176,000 160,000
귀	Minimum Bend Redius, (6) Inch		>1/4* >1/4* 3/16	Titenium -	3/16 3/16 3/16 1//*		3/16 >1/4* >1/4*	Titenium -	3/38 3/16 3/16 3/16		3/16 >1/4 3/16	Titenium -	3/16 3/16 1/4*		3/16 >1/4* >1/4*
t 1450°F.	VEN(5)		358 384 400		190 275 288 338		326 290 351		199 248 285 317	-	274 30 8 317		303 308 308		280 311 311
As Hot Rolled at 1450°F. (Elong., % in 1 Inch		2.6 2.0 2.0		18.0 4.5 4.0 5.0		7.0 7.0 7.0		22.0 10.5 6.0 4.0		3 4.3 0 2.1		20 20.04 20.04 20.04		7.0 5.0 4.0
As H	Tensile Strength, (4) p.s.i.		162,700 155,700 195,400		84,900 141,100 147,200 152,700		165,000 167,700 178,800		89,700 139,400 167,500 184,200		136,000 154,700 164,400		83,000 134,000 155,200 180,700		144,700 163,000 183,000
	Intended Composition, £		2.5 No. 3.0 Gr 3.5 No. 3.0 Gr 5.0 No. 3.0 Gr		Unalloyed 2.5 Mo, 1.0 Mn 3.5 Mo, 1.0 Mn 5.0 Mo, 1.0 Mn		2.5 No. 2.0 No. 3.5 No. 2.0 No. 5.0 No		Unalloyed 2.5 Mo, 1.0 Fe 3.5 Mo, 1.0 Fe 5.0 Mo, 1.0 Fe		2.5 Mo, 2.0 Fe 3.5 Mo, 2.0 Fe 5.0 Mo, 2.0 Fe		Unalloyed 2.5 Mo, 1.0 Co 3.5 Mo, 1.0 Co 5.0 Mo, 1.0 Co		2.5 Mb, 2.0 Ge 3.5 Mb, 2.0 Ge 5.0 Mb, 2.0 Ge
	Heat No.		WH191 WH200 WH205		WEL 86 WEL 82 WEL 82		ME1.83 ME1.79 ME1.73		WH207 WH218 WH227 WH223		WH210 WH222 WH226		WELSO WEL75 WELSA WELSS		MR185 WR185 WR189

Hot Rolled at 1450°F. and Aged 4 Hrs. at 750°F. (2	Minimum Bend Tensile Elong., Bend Tensile Radius, (6) Strength, (4) % in Radius, (6) Strength, Inch p.s.i. 1 Inch VHN(5) Inch p.s.i.	Titanium - Molybdenum - Nickel	3/64 79,500 18.0 181 1/16 74,000 15.5 178 3/32 3/16 136,500 1.5 330 >1/4**	141,700 8.0 282 >1/4" 147,700 3.0 314 179,200 2.0 315 >1/4* 128,300 8.5 301	2.0% Nickel	>1/4* 139,700 5.5 275 3/16 85,700 0.5 366 >1/4** 3/16 151,700 4.0 353 >1/4* 52,100 0.0 753 >1/4**	76,000 0.0 100,000 *1//*
.50°F. 750°F. (2)	Minimu Bend Bend Radius IN(5) Inch						•
ot Rolled at 14 Leged 4 Hrs. at	Elong., % in 1 Inch VH						
H. Bid	Tensile Strength, (4) p.s.1.		79,500	179,200	2,0% Nickel	139,700	185,000
; (1)	Minimum Bend Radius, (6) Inch	Ti tanium	3/64	3/16 3/16	•	>1/4* 3/16	3/16
at 1450°F.	VHN(5)		185	253 316		265 328	382
As Hot Rolled at 1450°F.(1)	Elong., % in 1 Inch		18.0	2.4 0.0		\$ N	3.0
As H	Tensile Strength, (4) P.S.i.		80,800	170,100		144,300	185,400
	Intended Composition, %	·	alloyed Mo, 1.0	5.0 %c, 1.0 Ni		2.5 No. 2.0 Nd 3.5 No. 2.0 Nd	2.0
	Heat No.		WH187	WEL 93		WH202	WH192

£005

As hot rolled at 1450°F.

Hot-rolled sheet aged 4 hours at 750°F. in air and air cooled.

Heated in air 1/2 hour at 1600°F. and quenched in cold water.

Average of 2 longitudinal 14-gauge specimens, 3 inches long by
0.375 inch wide with a 0.250-inch-wide reduced section.

10-kg. load. Hardness at the center of the cross section of the sheet 90° to the surface and to the rolling direction.

Minimum bend radius without cracking on a single longitudinal specimen 3 inches long by 0.5 inch wide. Tested with the surface skin present. Some ductility.

Very little ductility. (3)

(%)

* *

TABLE 4. HEAT-TREATING AND AGING DATA FOR TITANIUM-MOLYBORNUM ALLOYS WITH ADDITIONS OF CARBON, COPPER, CHROMIUM, MANGANESE, IRON, COBAIL, OR NICKEL PREPARED FROM PROCESS A METAL

			WALL	Walsen Handanes After Indianted Transformt (1.64 cm. Tag.	to ted Tr	1) + mem + (1				Minimm Band Radius After Indicated	d.Redius	After Ind	leated T	Treatment(2)		
Heat No.	Intended Composition, %	As Hot Rolled 4	As Roll Roll Age	Heat Treated 1450 F. (5)	Heat Treated 1550°F. (6)	Heat Treated 1600°F. (7)	Heat Treated 1650°F.	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)	As Hot Rolled (3)	As Hot Rolled Aged 4 Hrs 750°F. (4)	Heat Treated 1450°F. (5)	Heat Treated 1550°F. (6)	Heat Treated 1600°F. (7)	Heat Treated 1650°F. (8)	Heat Treated 1700°F. (9)	Heat Treated 1750*F. (10)
						<u></u> ≓	Ittanium -	- Molybdenum 0.25% Carbon	um - Carbon on	티							
FE233 FE234 FE236	Unalloyed 2.5 Mo, 0.25 G 3.5 Mo, 0.25 G 5.0 Mb, 0.25 G	202 268 295 295	205 279 304 320	177 287 303 328	178 272 269 269	188 283 285 285	186 289 289 264	198 290 287 274	223 302 303 294	7777 7777 7777 7777 7777 7777 7777 7777 7777	1/16 3/16 1/4* ×1/4*	1/16 3/16 >1/4* >1/4*	1/16 3/16 >1/4* >1/4*	1/16 >1/14 >1/4*	1/16 ×1/1/* ×1/1/*	1/16 >1/1/4** \1/4**	1/16
							ol	O. 5% Carbon	dì								
WH235 WH239 WH243	2.5 Mb, 0.50 C 3.5 Mb, 0.50 C 5.0 Mb, 0.50 C	282 279 294	297 313 348	299 304 324	277 266 283	295 285 278	309 294 2 66	302 299 281	312 285 312	14/4* 14/4*	1/4**	1/7# 1/7# 1/4#	,1/7* ,1/4* ,1/4*	#7/L	21/4 21/4 31/4	1/4 1/4 1/4	1/4
						₽d	Titenium -	- Molybdenum	um - Codder	ij							
WE206 WE213 WE42 WE38	Unalloyed 2.5 Mo, 1.0 Cu 3.5 Mb, 1.0 Cu 5.0 Mo, 1.0 Cu	798 798 798 798 798 798 798 798 798 798	263 304 327	179 250 244 293	185 283 277	206 285 301 266	202 3 96 297 276	201 296 287 292	219 302 313 278	3/16 3/16 3/16 1/4**	3/16 ×1/4* ×1/4*	3/16 3/16 3/16 3/16	3/16 3/16 3/16 3/16	3/16 ×1//4* ×1//4*	1/8 11/4* ×1/4*	1/8 71/4* 71/4*	**************************************
							€	2.0% Copper	ы								
WE212 WE209 WE171	2.5 Hb, 2.0 Gu 3.5 Hb, 2.0 Gu 5.0 Hb, 2.0 Gu	23.2 23.2 24.2 24.2 24.2 24.2 24.2 24.2	33 33 33 33 33 33 33 33 33 33 33 33 33	319 287 283	365 303 303 303	33 32 302	888	ዿ፞፞፞፞፞፞፞፞ዿ፠	376 327 317	3/16 >1/4* 3/16	*****/ **/**/ **/**/ **/**/ **/**/ **/**/ **/**/ **/**/ **/**/ **/ **/*/ **/*/ **/*/ **/*/ **/*/ *	3/16 3/16 3/16	3/16 3/16 3/16	3/16 >1/4* >1/4*	****	****	**** 7/7/ 7/7/ 7/7/
				•	,	H	Litenium -	- Molybdenum	1	Chronium							و الماري
WELSO WELSO WELSO WELSO	Unalloyed 2.5 Mb, 1.0 Gr 3.5 Mb, 1.0 Gr 5.0 Mb, 1.0 Gr	# 2 2 2 2 E	185 266 272 377	155 239 248 261	153 295 268 262	175 278 297 264	195 286 281 259	191 285 274	263 263 266	2000 2000 2000 2000 2000 2000 2000 200	3/32 3/16 >1/4* >1/4*	37.6 37.6 37.6 37.6	3,76 3,76 3,76 3,76 3,76	% *** *** *** ***	3/35 7/1/4** 1/4**	2/// 2/// ****// *****	**************************************
	→						c/B	2.0% Chromitum	罰								
##1.96 ##1.96 ##2.04	2.5 No. 2.0 Gr 3.5 No. 2.0 Gr 5.0 No. 2.0 Gr	322	32,73	256 281 298	294 298 256	297 305 247	291 262 257	290 284 256	294 286 261	3/1× 2/1× 4/4*	3/16 ×1/4* ×1/4*	3/16 3/16 3/32	3/16 3/3/26 3/3/2	√√, 3,7, 3,7, 1,6, 1,6, 1,6, 1,6, 1,6, 1,6, 1,6, 1	×1,7,7 ×1,7,4	×1//**	*** 7777

4

Tr. Carter

-

TABLE 4. (Continued)

•			Vickers Hardness		After Indicated Treatment(1	icated Tr	satment (1	<u></u>			Minimum Be	Bend Radius	After Indicated		Treatment(2)	2)	
Heat No.	Intended Composition, %	As Hot Rolled (3)	As Hot Rolled Aged 4 Hrs 750°F. (4)		Heat Treated 1550°F.	Heat Treated 1600°F. (7)	Heat Treated 1650°F.	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)	As Hot Rolled (3)		Heat Treated 1450°F. (5)	•	1 10 100	Heat I Treated 1650 F. (8)	Heat Treated 1700 F. (9)	Heat Treated 1750°F. (10)
															1		
							er)	3.0% Chromium	1cm								
WH191 WH200 WH205	2.5 No. 3.0 Gr 3.5 No. 3.0 Gr 5.0 No. 3.0 Gr	358 384 400	358 383 409	276 354 330	292 351 307	264 · · · 283 292	270 262 277	272 327 264	282 285 283	>1/4* >1/4* 3/16	>1/4* >1/4* >1/4*	3/16 >1/4* 3/16	3/16 ×1/4* 3/16	>1/4* >1/4* >1/4*	>1/4* >1/4* >1/4*	***** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
						Tite	Titanium - W	Wolybdenum - M 1.0% Manganese	Manganes	989							
WE172 WE186 WE1.82	Unalloyed 2.5 Mo, 1.0 Mn 3.5 Mo, 1.0 Mn 5.0 Mn	190 275 288 338	187 294 302 344	169 291 350 333	176 310 318 273	189 327 319 281	201 302 312 312	204 314 314 204	193 353 324 294	3/64 3/16 3/16 >1/4*	3/32 3/16 >1/4* >1/4*	3/16 3/16 3/16 3/16	3/16 3/16 3/16	3/32 \1/4* \3/16 \1/4*	3/1/4*	3/16 71/4* 71/4*	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
							જો	2.0% Manganese	0000								
WE1.83 WE1.79 WE1.73	2.5 %, 2.0 km 3.5 %, 2.0 km 5.0 %, 2.0 km	326 290 147	324 317 406	391 398 363	359 333 363	332 324 304	369 355 322	368 370 321	373 355 375	3/16 >1/4* >1/4*	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/16 3/16 >1/4*	3/16 3/16 >1/4*	>1/4 >1/4 >1/4	>1/4** >1/4** >1/4**	>1/4* >1/4* >1/4*	>1//** >1//** >1//**
						714	Titenium - M	Molybdenum	- Iron								
WH2207 WH2218 WH227	Unalloyed 2.5 Mo, 1.0 Fe 5.0 Mo, 1.0 Fe	199 248 285 317	191 265 317 348	171 310 319 407	160 370 328 328	170 376 353 319	188 339 389 383	13 36 32 32 32 32 32 32	216 363 399 394	3/32 3/16 >1/4 3/16	1/16	1/16 3/16 >1/4*	1/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/35 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/32 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	****	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
							25(2.0% Iron			-						
##210 ##222 ##226	2.5 Mo, 2.0 Fe 3.5 Mo, 2.0 Fe 5.0 Mo, 2.0 Fe	274 308 317	306 337 340	704 703 368	42 372 376	425 413 409	777 777 777	442 296 361	793 333 564	3/16 >1/4 3/16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>1/4* >1/4* 3/16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>1/4# >1/4# 3/16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	,		•			Tite	Titanium - Mol.	Molybdenum 0% Cobalt	- Cobalt		,						
WH180 WH175 WH184	Unalloyed 2.5 Mo, 1.0 Go 3.5 Mo, 1.0 @o 5.0 Mo, 1.0 Go	193 303 306 306	188 296 326 331	199 297 314 355	199 356 349 314	181 367 316	202 336 310	388 288 288 288 288 288 288 288 288 288	38.52	3/32 3/16 3/16 1/4*	3/16 3/16 >1/4* >1/4*	3/32 3/16 3/16	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/1¢ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/16 /1/k* /1/k*	**************************************	****

			Vickers	Vickers Hardness After Indicated Treatment(1	After Ind	icated Tr	eatment (1	(5	d Radius	Bend Redius After Indicated Trestment(2	icated Tr	estment(2		
Heat No.	Intended Composition, %	As Hot Rolled (3)	As hot Rolled Aged 4 Hrs 750°F. (4)	Heat Treated 1450°F. (5)	Heat Treated 1550°F. (6)	Heat Trested 1600°F. (7)	Heat Treated 1650°F. (8)	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)	As Hot Rolled /	As Hot Rolled Aged 4 Hrs 750°F. (4)	Heat Trested 1450°F° (5)	Heat Treated 1550 F. (6)	Heat Trested 1600°F.	Heat Treated 1650#F. (8)	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)
								2.0% Cobalt	拍								
MH181 MH185 WH189	2.5 Mb, 2.0 Go 3.5 Mb, 2.0 Go 5.0 Mb, 2.0 Go	1388	296 312 350	390 390 357	380 372 421	377 331 417	499 455 401	373 331 401	751 783 380	3/16 >1/4* >1/4*	3/16 >1/4* >1/4*	3/16 3/16 >1/4*	>1/4* >1/4* >1/4*	×1/4* ×1/4* ×1/4*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***** *****	>1/4# >1/4# >1/4#
						터	Titanium -	Molybdenum 1.0% Nickel	um - Nickel el	<u></u>							
WH187 WH203 WH199	Unalloyed 2.5 Mo, 1.0 M1 3.5 Mo, 1.0 M1 5.0 Mo, 1.0 M1	185 263 316	181 268 282 315	163 254 308 404	172 319 350 351	178 330 301 301	187 331 345 311	32,28 3 32,28 32,28 32,28 32,28 32,28 32,28 32,28 32,28 32,28 32,28 32,2	33833	3/64 3/16 3/16 3/16	1/16 3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/64 3/16 3/16 3/16	7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	3/32 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/3/2 \1/4* \1/4* \1/4*	3/16 >1/4** >1/4** >1/4**	3/16 >1/4** >1/4** >1/4**
								2.0% Nicke	딞								
WE202 WE196 WE192	2.5 No, 2.0 Ni 3.5 No, 2.0 Ni 5.0 No, 2.0 Ni	265 328 382	275 353 390 ×	349 446 402	, 401 405 405	366 453 417	334 446 453	783 387 397	. 373 417 455	>1/4* 3/16 3/16	3/16 >1/4* >1/.*	>1/t* >1/t* >1/t*	×1//* ×1//*	* * * * * * * * * * * * * * * * * * *	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
														± /-	± / /	* /~ /	t / .

10-kg. load. Hardness at the center of the cross section of the sheet specimen 90° to the surface and to the rolling direction. Average of $\widehat{\Xi}$

t cracking on a single longitudinal specimen wide. Tested with the surface skin present. (2)

rs at 750°F. in air and air cooled. water. in cold . and quenched

water. weter. and quenched in cold and quenched in cold and quenched in cold quenched in cold quenched in cold

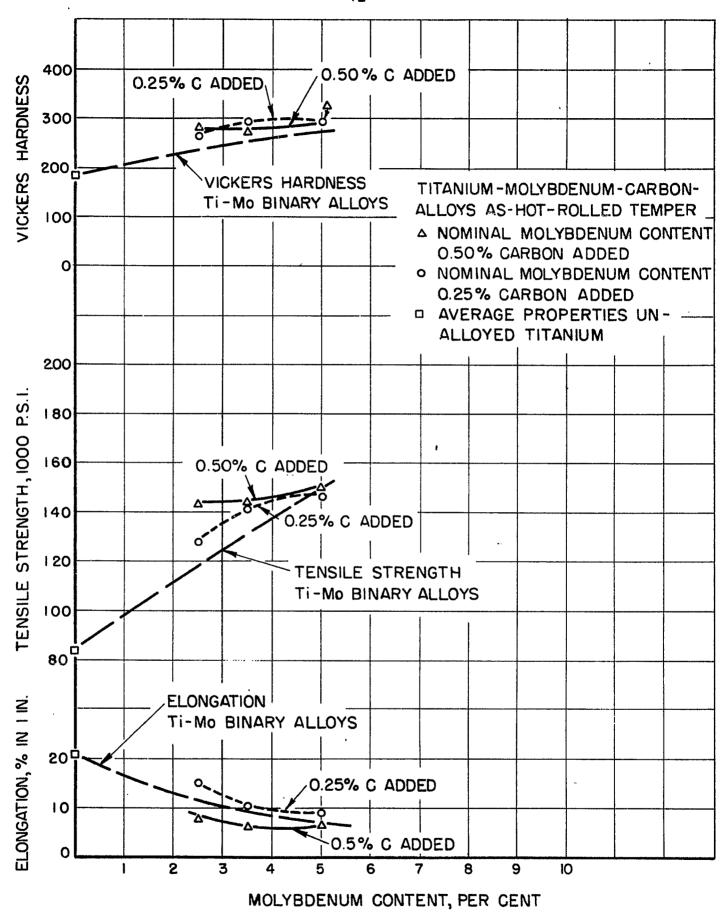


FIGURE 3. EFFECT OF CARBON ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MOLYBDENUM ALLOYS-PREPARED FROM PROCESS A METAL

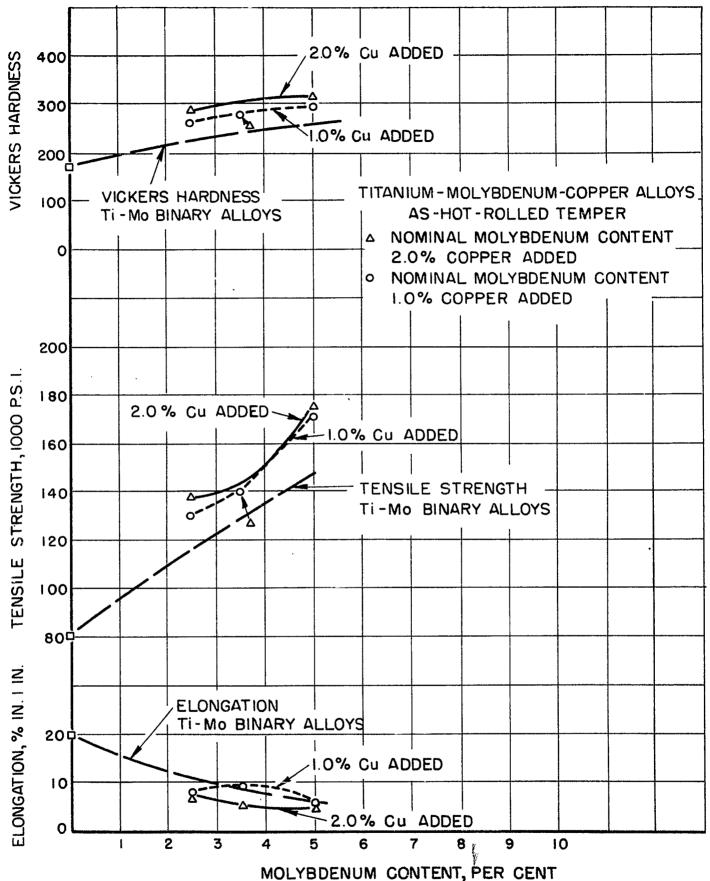


FIGURE 4. EFFECT OF COPPER ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MOLYBDENUM ALLOYS-PREPARED FROM PROCESS A METAL

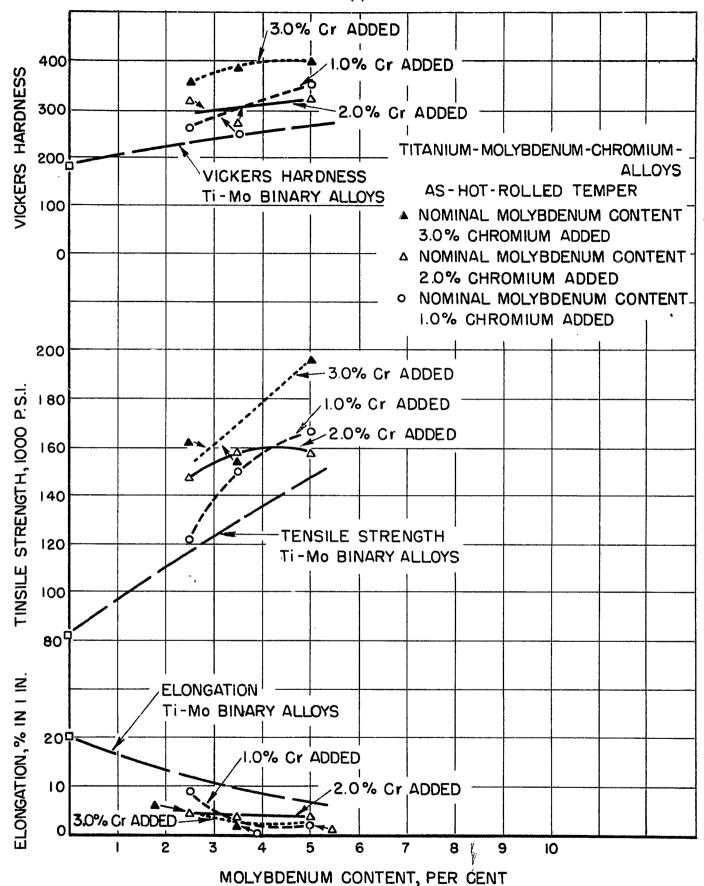


FIGURE 5. EFFECT OF CHROMIUM ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MOLYBDENUM ALLOYS. PREPARED FROM PROCESS A METAL

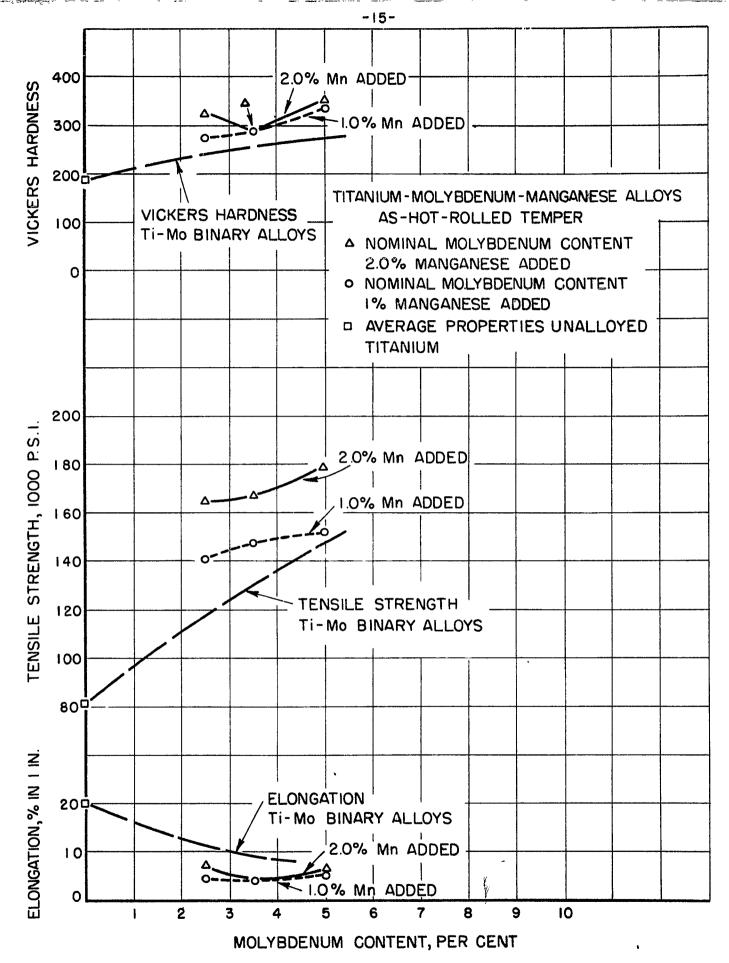


FIGURE 6. EFFECT OF MANGANESE ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM MOLYBDENUM ALLOYS-PREPARED FROM PROCESS A METAL

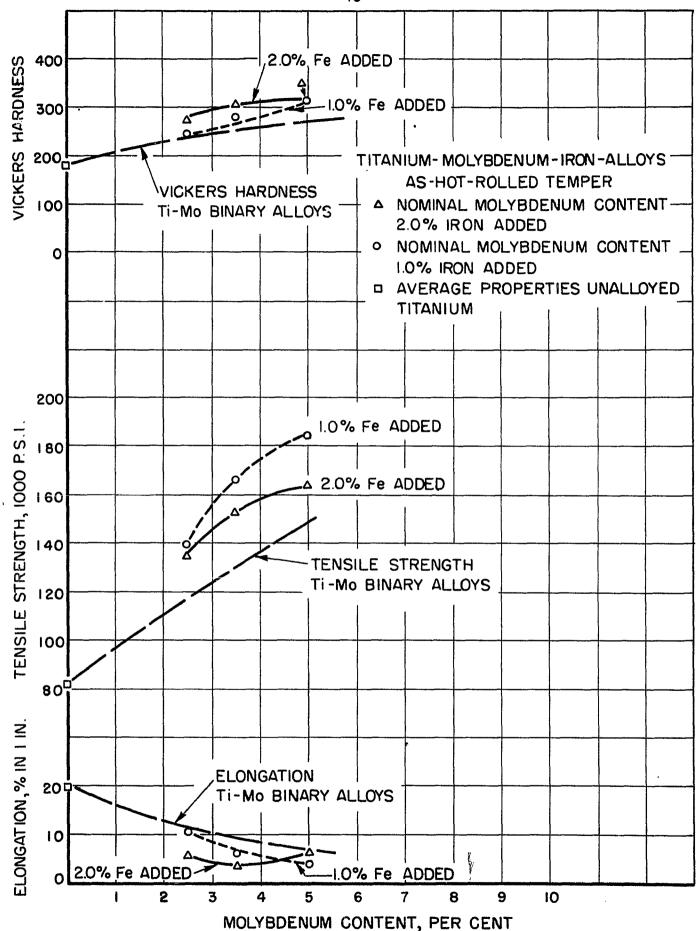


FIGURE 7. EFFECT OF IRON ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MOLYBDENUM ALLOYS. PREPARED FROM PROCESS A METAL

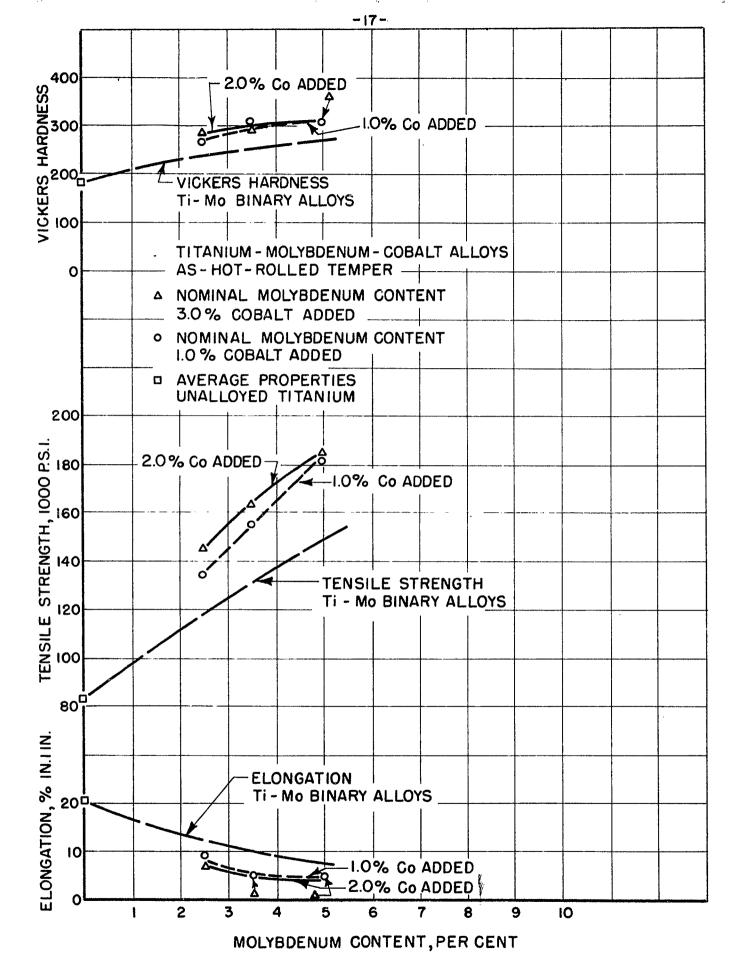


FIGURE 8. EFFECT OF COBALT ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM MOLYBDENUM ALLOYS-PREPARED FROM PROCESS A METAL

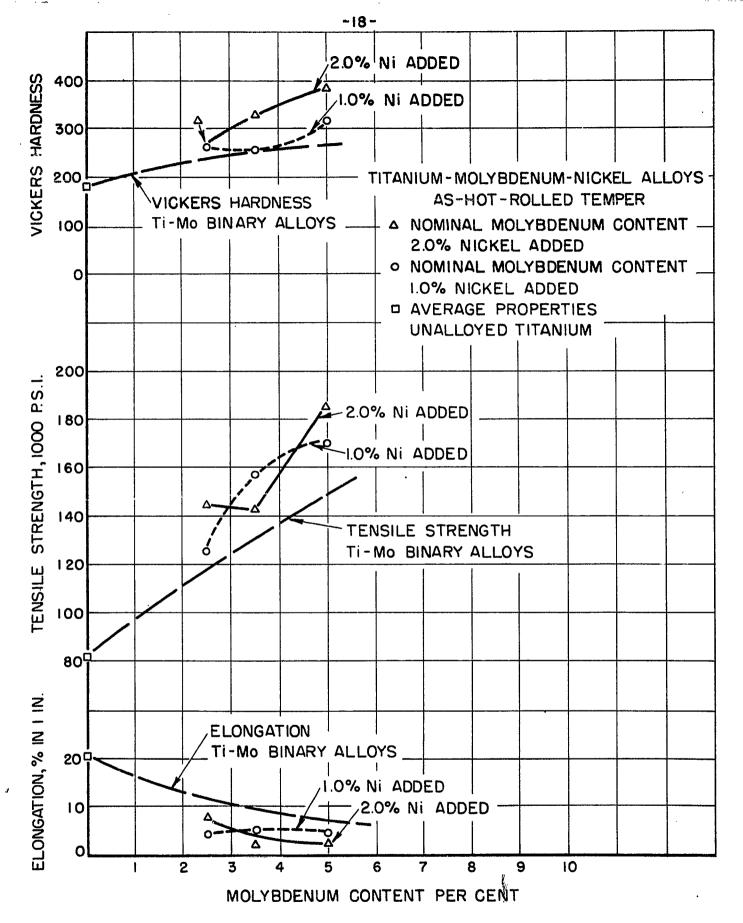


FIGURE 9. EFFECT OF NICKEL ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MOLYBDENUM ALLOYS-PREPARED FROM PROCESS A METAL.

from the above additions to binary titanium-molybdenum base alloys in the as-hot-rolled condition. In these graphs, the tensile properties and hardness of as-hot-rolled binary titanium-molybdenum alloys have been reproduced as dashed lines from data reported previously.

In general, the tensile strength and hardness of the titanium-molybdenum alloys were increased, with a corresponding decrease in elongation, by these additions. However, the addition of 1.0 and 2.0 per cent copper, 2.0 per cent manganese, and 2.0 per cent iron to the titanium - 5 per cent molybdenum alloys showed a large increase in tensile strength with essentially the same elongation values as the binary alloys. The properties of these alloys were:

Heat No.	Intended Composition, Per Cent	Tensile Strength, p.s.i.	Elongation, Per Cent in 1 Inch	<u>vhn</u>	Minimum Bend <u>Radiua</u>
WC84(1)	5.0 Mo	144,900	6.5	268	>1/4*
WC38	5.0 Mo, 1.0 Cu	171,700	5 .5	298	>1/4*
WH1 71	5.0 Mo, 2.0 Cu	174,700	5.0	315	3/16*
SH173	5.0 Mo, 1.0 Mn	178,800	7.0	351	>1/4*
WH226	5.0 Mo, 2.0 Fe	164,400	6.5	317	3/16

⁽¹⁾ Data from Table 18, page 162, of previous progress report.

^{*} Some bend ductility.

The addition of 3.0 per cent chromium, 1.0 per cent iron, 2.0 per cent cobalt, or 2.0 per cent nickel to the titanium - 5 per cent molybdenum base gave tensile strengths of 195,400, 184,200, 183,000, and 185,400 p.s.i., respectively. However, the elongation of these alloys was lower than that of the binary base.

These alloys in the as-hot-rolled temper were aged 4 hours at 750°F. and the tensile properties determined. As shown by the data in Table 3, the tensile strength of many of these alloys in the lower ranges of molybdenum can be improved by aging the as-hot-rolled sheet without too great a sacrifice in ductility.

The properties of titanium-manganese base alloys containing additions of nitrogen, copper, molybdenum, and cobalt are listed in Tables 5 and 6. Figures 10 to 13 illustrate graphically the effect of the above additions on the tensile strength, elongation, and hardness of the titanium-manganese base. In these figures, the curves for the binary titanium-manganese alloys have been reproduced as dashed lines from previous data.

The addition of 0.1 per cent nitrogen to the titanium-manganese base increased the tensile strength about 10,000 p.s.i. without any sacrifice in elongation. With 0.2 per cent nitrogen added, a further increase in tensile strength was obtained, but at a considerable sacrifice in ductility. The alloys containing 7.5 and 10.0 per cent manganese and 0.2 per cent nitrogen were too brittle to shear.

The ternary titanium-manganese base alloys which had good tensile strength and elongation values in the as-hot-rolled temper were:

TABLE 5. PROPERTIES OF TITANIUM-MANGANESE ALLOYS WITH ADDITIONS OF NITROGEN, COPPER, MOLIEDENUM, OR COBALT PREPARED FROM PROCESS A METAL

	Minimum Bend Radius, (6) Inch		3/32	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>1/4**		>1/4* >1/4*	*** ~^\	t /1	ŧ		3/32 >1/4** >1/.**	>1/4* >1/4*		>1/4 >1/4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
				425 425 428			374			•		290 290 201			375 390	
Trested et 1600°F. (3	Elong., % in 1 Inch		17.5	0 0 0	1.0		% % %	000	1	ŧ		19.2 2.2 2.4) H H		1.0	0.0
Heat	Tensile Strength, (4) pls.1.		74,300	159,100 108,700 111, 6 00	121,900		161,300	143,800	000	1		75,000 123,200	111,300		112,000	122,500 91,700
(2)	Winimum Bend Radius, (6) Inch		1/32 3/16	3/16 /1/4* /1/4*	\1/t\ *		>1/4* >1/4*	\\ \\ \\\	†/T/	i		1/16 3/16 3/76	>1/4* 3/16		>1/4* >1/4*	>1/4* >1/4*
t 1450°F. at 750°F.	VEN(5)	uego	184	303 341 474	867		341	370	(14	•	띪	184 271 306	565 472		267 289	254 364
iot Rolled Aged 4 Hr	Elong., % in l Inch	nganese - Nitroge Nitrogen	1130	-0-F	5.0	0.2% Nitrogen	4.6 2.5	200		•	Manganese - Copper Of Copper	21.5	0 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	pper	2.0	8 H 0 O
I	Tensile Strength, (4) p.s.i.	Titanium - Manganese 0.1% Nitrog	75,000	128,200 156,200 136,000	190,000	0.2% N	139,900	175,000	700 517	1	Titanium - Manganese 1.0% Copper	120,300	120,000	2.0% Copper	170,000	120,400
ii i	Winimum Bend Radius, (6) Inch	I	3/64	3/16 3/16 \\	\1\f**		>1/4* 3/16	3/16	4/ T/	ı	리	3/64	3/16 3/16 \1/4**		3/16	3/16
Hot Rolled at 1450°F, (1)	VHN(5)		175	314 350 701	455		339	368	403 403	455		189 264	245 417		261 266	240 3 51
ot Rolled	Elong., % in l Inch		10.5	9.5 11.0	, w		ອງ ກຸ ກຸກ	100	⊃• ı	1		22.5	1.0		4.5	7.5
As H	Tensile Strength, (4) p.s.i.		88,000 161,600	146,000 156,900 173,500	184,400		143,700	167,200	000,40/1	(4)		78,600	201,400 195,000		167,300	138,800 166,600
	Intended Composition, %		red 0.10	2.5 ND, 0.10 N 3.5 ND, 0.10 N	7.5 km, 0.10 N		1.75 Mm, 0.20 N	0.20	7.5 Na. 0.20 N	Mn, 0.20		Unalloyed	5.0 May 1.0 Gu 5.0 May 1.0 Gu		E E	3.5 Mn, 2.0 Cu 5.0 Mn, 2.0 Cu
	Heat No.		WH155 WH156		• •		WH1.57	四(2)	WEL 67			MEL 25			WEI.26 Wei.34	WEI 38

1

(Continued) TABLE 5.

		AS	As Ect Rolled at 1450°F.	t 1450°F. (1)		Ho Hous	Hot Rolled at Aged 4 Hrs.	t 1450°F. at 750°F. (2)	2)	Heat	Heat Treated et 1600°F. (3)	1600°F. (3)	
Heat No.	Intended Composition, %	Tensile Strength, (4)	Elong., % in 1 Inch	VHN(5)	Minimum Bend Radius, (6) Inch	Tensile Strength, (4) p.s.1.	Elong., % in l Inch	VHN(5)	Minimum Bend Radius, (6) Inch	Tensile Strength,(4) p.s.i.	Elong., % in 1 Inch	VHW(5)	Minimum Bend Radius, (6) Inch
÷					Titanium	nium - Manganese - N 1.0% Molybdenum	e – Molybder denum	u nu					
WE220 WE221 WE225 WE229	Unalloyed 1.75 Mn, 1.0 Mo 2.5 Mn, 1.0 Mo 3.5 Mn, 1.0 Mo 5.0 Mn, 1.0 Mo	88,800 129,700 131,600 151,100 165,100	2.000 e	199, 275 313 313	3/16 3/16 3/16 3/16	90,100 126,500 132,500 142,300 167,500	0.00 0.00 0.00 0.00	203 285 335 353	3/16 3/16 3/16 >1/4**				
,						2.0% Wolybdenum	denum						
MB224 MB228 MB230 MB232	1.75 Mn, 2.0 Mo 2.5 Mn, 2.0 Mo 3.5 Mn, 2.0 Mo 5.0 Mn, 2.0 Mo	131,400 147,700 184,200 184,400	ໝ . ຜູພູພູ ກັດ ກ. ກ	301 281 372 390	3/16 3/16 3/16 >1/4**	144,200 157,700 160,000 167,600	504w 0222	307 307 351 392	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
					Titanium	nium - Menganese 1.0% Cobalt	e - Cobalt						
WH146 WH147 WH151 WH151	Unalloyed 1.75 km, 1.0 Go 2.5 km, 1.0 Go 3.5 km, 1.0 Go 5.0 km, 1.0 Go	82,900 121,000 140,700 166,700 150,400	222 1225 260 260 260	194 232 290 297 380	>3/32 >1/4 * 3/16 3/16	79,000 117,900 145,400 201,800 160,300	21.0 9.0 2.0 2.0 2.0	193 238 318 285 408	3/32 3/16 3/16 3/16	82,900 113,700 122,800 140,700 92,800	18 20 00 10 00 00 00 00 00 00 00 00 00 00 00	199 333 424 395 407	**************************************
						2.0% Cobalt	ادد						
MET 50 MET 50 MET 52	1.75 Mn, 2.0 Go 2.5 Mn, 2.0 Go 3.5 Mn, 2.0 Go 5.0 Mn, 2.0 Go	128,800 143,600 160,200	10.0 10.0 8.5	252 262 324 324	3/16 3/16 3/16 /**	122,700 176,700 163,300	446 0.40 0.40	291 341 341	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	110,700	1.5	406 421 421 408	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	ad at												

E003

(1) As hot rolled at 1450°F.
(2) Hot-rolled sheet aged 4 hours at 750°F. in air and air cooled.
(3) Heated in air 1/2 hour at 1600°F. and quenched in cold water.
(4) Average of 2 longitudinal 14-gauge specimens, 3 inches long by 0.375 inch wide with a 0.250-inch-wide reduced section.
(5) 10-kg. load. Hardness at the center of the cross section of the sheet 90° to the surface and to the rolling direction.
(6) Minimum bend radius without cracking on a single longitudinal specimen 3 inches long by 0.5 inch wide. Tested with the surface skin present.
(7) Sheet was too brittle to shear into specimens.
* Some ductility.
* Wery little ductility. (3)

9

£**

The second secon

and the second contract of the second country and the second seco

TABLE 6. HEAT-TREATING AND AGING DATA FOR TITANIUM-MANGANESE ALLOYS WITH ADDITIONS OF COPPER, MOLIBDENUM, OR COBALT PREPARED FROM PROCESS A METAL

	Heat Treated 1750°F. (10)		**** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*** \\1/4 \\1/4		*****		***** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		*****
2)	Heat Treated 1700'F. (9)		3/16 >1/4* >1/4*	**************************************		****		****** ******		*****
After Indicated Treatment(2)	Heat Treated 1650°F. (8)		3/16 >1/4* >1/4*	•		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	·	>3/16 >1/7,** >1/7,** >1/7,**		*****
dicated T	Heat Treated 1600°F. (7)			*** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		>1/4 >1/4 >1/4 >1/4		**************************************		* * * * * * * * * * * * * * * * * * * *
After In	Heat Treated 1550°F. (6)		3/64 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* * * * .		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3/07/1/4# 0/1		****
Bend Radius	Heat Treated 1450°F. (5)		3/16	* * * * * * * * * * * * * * * * * * *		3/16 >1/4# >1/4# 3/16		3/64 3/16 3/16 3/16 3/16		3/16 3/16 3/16 3/16
Minimum Be	As Hot Rolled Aged 4 Hrs 750°F. (4)		1/32 3/16 3/16	*** \1\/* \1\/*		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1/16 3/16 3/16 /1/4*		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	As Hot Rolled (3)	a	3/64 3/16 3/16	>3/16 >1/4* >1/4*		>1/4* 3/16 >1/4*		3/64 3/16 3/16 >3/16 >1/4**		2/1/5 4/1/5 4/1/6 4/1/6
	Heat Treated 1750°F. (10)	- Nitrogen n	220 404 361	459 464 434	gi,	413 470 478 464	- Copper	232 316 412 341 446		429 425 317 421
)	Heat Treated 1700°F. (9)	Manganese 1% Nitrogen	201 285 445	445 473 -	0.2% Nitrogen	409 425 447 464 -	Manganese Of Copper	218 377 284 408 370	Copper	437 294 433
estment(1	Heat Treated 1650eF. (8)	Titanium - Man 0.1%	190 353 411	437 442 370	0	397 373 447 437	Titanium - Mar	204 299 405 413	2.0%	357 411 446
After Indicated Treatment(1)	Heat Treated 1600°F. (7)	11	174 359 410	752 758 386 -		374 481 427 -		166 290 401 414		375 390 394 413
After Ind	Heat Treated 1550°F. (6)		161 275 446	402 417 464		348 320 442 432		174 338 325 394		425 333 459
Vickers Hardness			153 336 386	374 383 405 -		345 385 407 395		165 287 346 394		310 225 447
Vickers	As Hot Rolled Aged 4 Hrs 750°F. (4)		337 337 309	341 474 498		372 370 413		184 271 265 265 472		267 254 254 254
	As Hot Rolled (3)		175 321 314	350 401 455		339 405 405 453		189 264 245 417		. 350 26 350 26 36 36 36 36 36 36 36 36 36 36 36 36 36
	Intended Composition, %		ដូង្គីង	0.10		1.75 Ma, 0.20 N 2.5 Ma, 0.20 N 3.5 Ma, 0.20 N 5.0 Ma, 0.20 N 7.5 Ma, 0.20 N		Unalloyed 1.75 Mm, 1.0 Gu 2.5 Mm, 1.0 Gu 3.5 Mm, 1.0 Gu 5.0 Mm, 1.0 Gu		1.75 km, 2.0 Gu 2.5 km, 2.0 Gu 3.5 km, 2.0 Gu 5.0 km, 2.0 Gu
	Heat No.		WELL 55 WELL 56 WELL 58	(E)		WELS7 WELS9 WELS3 WELS3 WELS5(11)		WELL 22 WELL 25 WELL 33 WELL 37		WEL26 WEL34 WEL38 WEL36

(Continued) TABLE 6.

- 1			Vickers	Hardness	After Ind	icated Ir	After Indicated Treatment(1)	<u> </u>			Minimum Ben	nd Radius	After In	dicated To	Bend Radius After Indicated Trestment(2)	(;	
Heat No.	Intended Composition, %	As Hot Rolled (3)	As Hot Rolled Aged 4 Hrs 750°F. (4)	Heat Treated 1450°F. (5)	Heat Treated 1550°F. (6)	Heat Treated 1600°F. (7)	Heat Treated 1650°F. (8)	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)	As Hot Rolled (3)	As Hot Rolled Aged 4 Hrs 750°F. (4)	Heat Treated 1450°F. (5)	Heat Treated 1550°F. (6)	Heat Treated 1600°F. (7)	Heat Treated 1650*F. (8)	Heat Treated 1700°F. (9)	Heat Treated 1750°F. (10)
						핍	Titanium - 1	- Manganese - M 1.0% Molybdenum	- Kolybdenum enum	enne							
WH220 WH221 WH225 WH229	Unalloyed 1.75 Mm, 1.0 Mo 2.5 Mm, 1.0 Mo 3.5 Mm, 1.0 Mo 5.0 Mm, 1.0 Mo	199 275 349 313	203 235 335 335 335	176 253 318 393 413	333 339 390 404	199 289 344 405 405	188 330 410 387	384 384 384 384 384 384 384 384 384 384	182 380 394 373 419	3/16 3/16 3/16 3/16	3/16 3/16 3/16 4/1 **	1/16 3/16 3/16 3/16 /1/4#	1/16 >1/4* >1/4* >1/4*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/16 3/16 3/1/4 3/1/4 3/1/4 3/1/4 3/1/4 3/1/4
							2.0%	0% Molybdenum	anua anua								
WH224 WH236 WH232	1.75 Ma, 2.0 Mo 2.5 Ma, 2.0 Mo 3.5 Ma, 2.0 Mo 5.0 Ma, 2.0 Mo	372 372 390	35 75 65 36 75 75 75 75 75 75 75 75 75 75 75 75 75	284 315 302 401	342 357 368 363	327 340 363 372	340 378 360 360	345 345 348 348	33.38	3/16 3/16 3/16 >1/4*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/16 1/4 3/16 >1/4**	****** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* * * * * * * * * * * * * * * * * * * *	>1/4* >1/4* >1/4*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>1/k* >1/k* >1/t*
						41	Titenium - 1	- Manganese	- Cobalt								
WELL 47 WELL 52 WELL 52 WELL 53	Unalloyed 1.75 Mn, 1.0 Go 2.5 Mn, 1.0 Go 3.5 Mn, 1.0 Go 5.0 Mn, 1.0 Go	232 232 290 380	193 238 318 285 408 408 5	178 323 390 321 390	184 335 446 409 434	199 333 424 395 407	217 339 437 279 423	755 756 766 769 769 769 769 769 769 769 769 76	787 787 787 787 789 789 789 789 789 789	>3/32 >1/4* 3/16 3/16 3/16	% % % % % % % % % % % % % % % % % % %	3,16 3,16 3,16 3,16 3,16	3/3/2/1/4# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/32 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/16 >1/4# >1/4# >1/4#	***** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**** 7,7,7,7
ų.			ţ				20(2.0% Gobalt									
MET 52 MET 52 MET 52	1.75 Ma, 2.0 Co 2.5 Ma, 2.0 Co 3.5 Ma, 2.0 Co 5.0 Ma, 2.0 Co	255 262 378 378	307 341 341 3941	397 318 430 401	390 409 386	40 6 459 408	438 394 478 408	401 473 422 446	439 429 483 441	3/16	3/16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**************************************	* * * * * * * * * * * * * * * * * * *	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	* * * * 7,1,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
(1) 10-k	10-kg load. Hardness	is at the co	nter of the	cross section	on of the	sheet	specimen 90°	11				H	!!		11		

direction. Average of at least 5 readings. the surface and to the rolling

Minimum bend radius without cracking on a single longitudinal specimen 3 inches long by 0.5 inch wide. Tested with the surface skin present.

As hot rolled at 1450°F.

Hot-rolled sheet aged 4 hours at 750°F. in air and air cooled.

Heated in air 1/2 hour at 1450°F. and quenched in cold water.

Heated in air 1/2 hour at 1600°F. and quenched in cold water.

Heated in air 1/2 hour at 1650°F. and quenched in cold water.

Heated in air 1/2 hour at 1750°F. and quenched in cold water.

Heated in air 1/2 hour at 1750°F. and quenched in cold water.

Heated in air 1/2 hour at 1750°F. and quenched in cold water.

Sheet was too brittle to shear into specimens. **2326686**39.*

Some ductility.

Very little ductility.

このでは、これはいってはないのは、

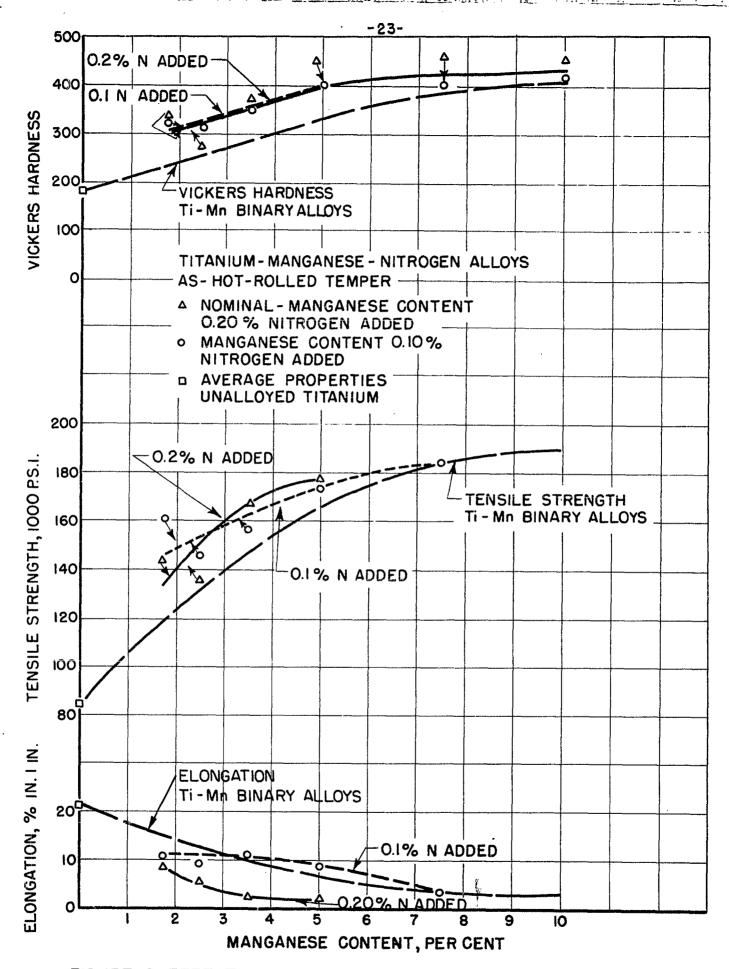


FIGURE IO. EFFECT OF NITROGEN ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MANGANESE ALLOYS-PREPARED FROM PROCESS A METAL

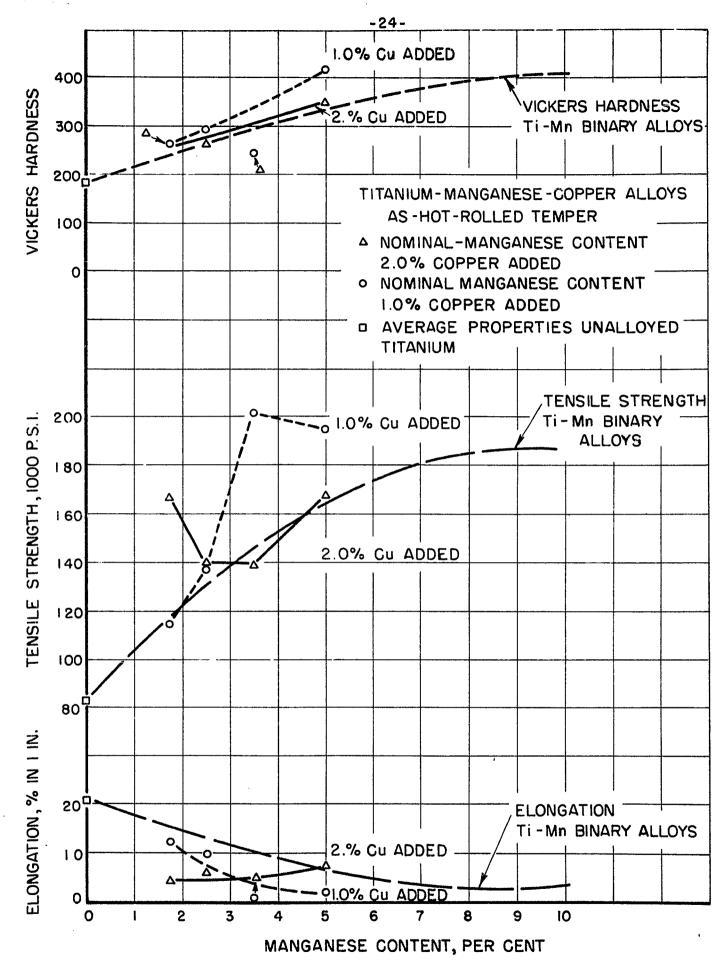


FIGURE II. EFFECT OF COPPER ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MANGANESE ALLOYS-PREPARED FROM PROCESS A METAL

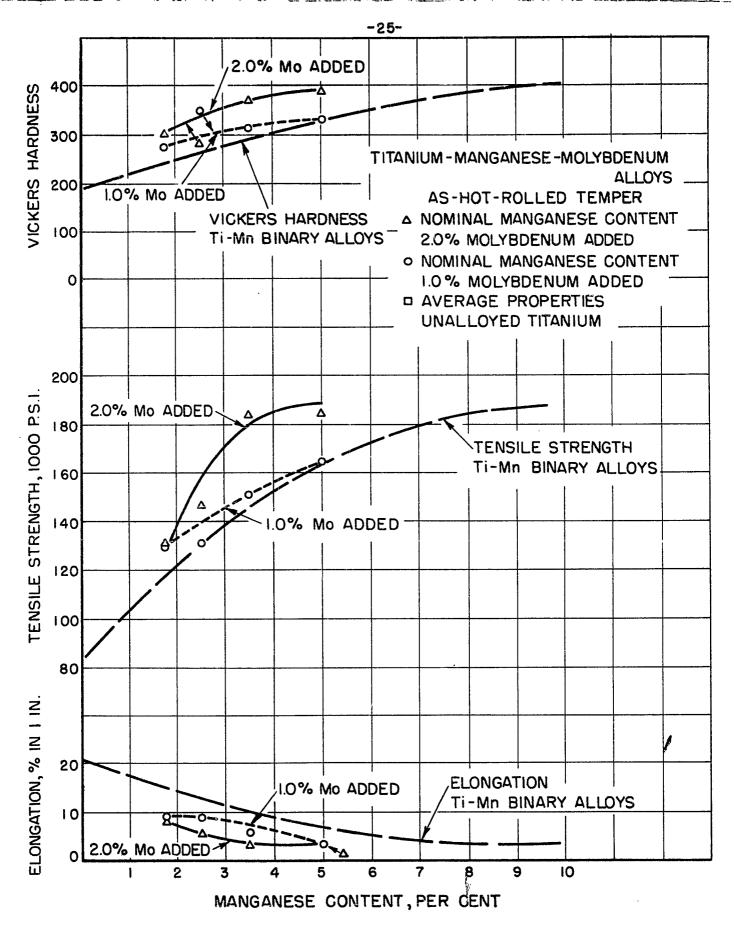


FIGURE 12. EFFECT OF MOLYBDENUM ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MANGANESE ALLOYS-PREPARED FROM PROCESS A METAL

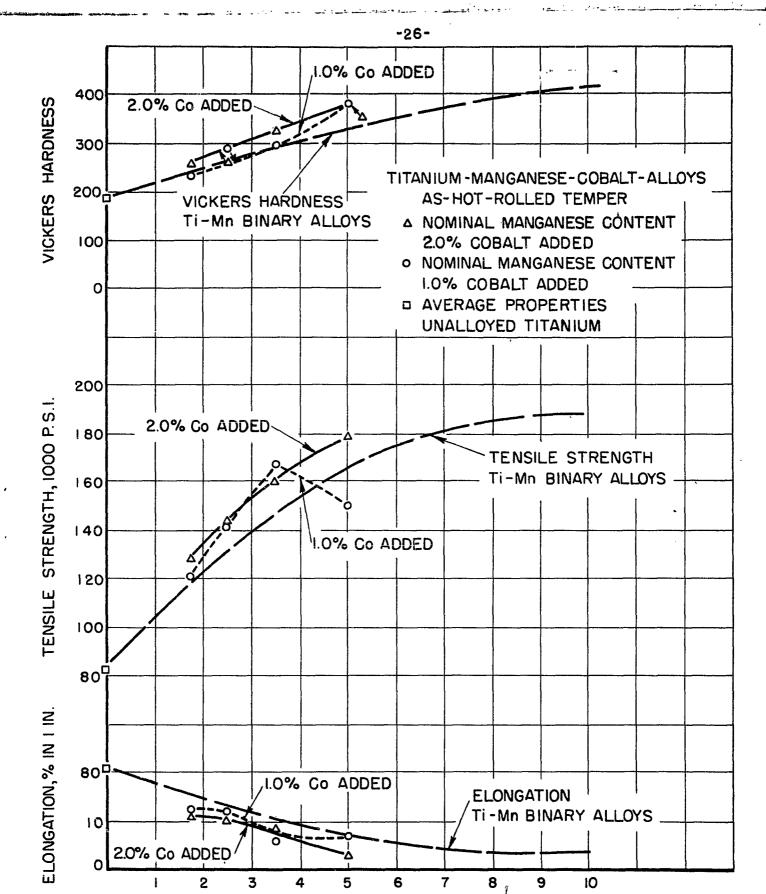


FIGURE 13. EFFECT OF COBALT ON THE PROPERTIES OF AS-HOT-ROLLED TITANIUM-MANGANESE ALLOYS-PREPARED FROM PROCESS A METAL

MANGANESE CONTENT, PER CENT

			As-Hot-Rolled	Temper	
Heat No.	Intended Composition, Per Cent	Tensile Strength, p.s.i.	Elongation, Per Cent in 1 Inch	<u>vhn</u>	Minimum Bend Radius
VH160	3.5 Mn, 0.1 N	156,900	11.0	350	3/16
UH162	5.0 Mn, O.1 N	173,500	8.5	401	<1/4*
WH145	5.0 Mn, 2.0 Cu	166,600	7.5	351	<1/4**
WH154	3.5 Mm, 2.0 Co	160,200	8.5	324	3/16
UH151	3.5 Mn, 1.0 Co	166,700	6.0	297	3/16

^{*} Some ductility.

In general, the other titanium-manganese base ternary alloys showed an increase in tensile strength and hardness above the value for the titanium-manganese base, but in these cases the elongation values were lowered by the additions.

The ternary titanium-manganese base alloys generally increased in hardness when quenched from temperatures of 1450 to 1750°F., as shown in Table 6. However, when some of these alloys were tested after a solution heat treatment at 1600°F., the tensile properties, as shown in Table 5, were generally inferior to those obtained in the as-hot-rolled temper.

The ternary titanium-manganese base alloys in the as-hot-rolled temper were aged for 4 hours at 750°F. and the tensile properties were then determined. As shown by the data in Table 5, the properties were generally inferior after aging to those obtained in the as-hot-rolled condition. In the following cases, increased tensile strengths were obtained by the aging treatment with little or no sacrifice in ductility.

^{**} Very little ductility.

Heat <u>No.</u>	Intende Compositi Per Cer	Lon,	
WH166	7.5 Mm,	0.1	N
WH159	2.5 Mn,	0.2	N
WH151	3.5 Mn,	1.0	Co
WH150	2.5 Mn,	2.0	Co

It should be noted, however, that neither the improvement nor the lack of improvement produced by aging is consistent. Therefore, the response to the aging treatment cannot be readily estimated.

INVESTIGATION OF REFRACTORIES FOR MELTING TITANIUM

(P. J. Maddex and L. W. Eastwood)

The investigation of ususual refractories for melting titanium was continued. Following previously established practice, 10- to 15-gram melts of titanium were made in small crucibles using a standardized melting temperature of 3100°F. The melts were held at this temperature for 1 minute and then cooled in the crucible.

In nearly all previous tests, the melts had been made in a vacuum. In many cases, gas evolution from the melt, probably hydrogen, had forced all or a portion of the melt from the test crucible. To eliminate this difficulty, a melting technique was developed using a purified argon atmosphere. The argon was purified by heating titanium chips to 2000°F. in the melting furnace just prior to melting the titanium um. By this technique, hardness values comparable to those obtained with vacuum melts were obtained without having the molten metal forced from the crucible.

The results of the present experimental work on refractories are listed in Table 7. None of the crucible materials, on which tests have been completed, can be considered satisfactory.

When the melt, made in the tungsten carbide crucible, was removed for chemical analysis, it was observed that the crucible adhered to the sides but not to the bottom of the test ingot. It was felt that a difference in porosity between the bottom and the sides of the pressed crucible might account for this.

The density of the bottom of the crucible was 12.6 as compared with 13.1 for the side. Porosity of the bottom was 14.1 per cent as compared with 13.4 per cent for the side. Since there is so little difference between the values of the side and bottom of the crucible, it does not seem reasonable that the results could be accounted for on this basis. Therefore, it seems that a small temperature difference may explain the greater degree of wetting of the sides of the tungsten carbide crucible.

Negotiations have been made with the Norton Company to supply hot-pressed coucibles for these studies. It is anticipated that orders for additional crucibles can be placed in the near future.

ANALYTICAL METHOPS FOR TITANIUM-BASE ALLOYS

The Determination of Oxygen in Titanium by the Cl2 - CCl/ Method

(E. J. Center and A. C. Eckert)

It was emphasized in the last report that the success of the Cl_2 - CCl_4 method for O_2 in titanium depends, first of all, on the

TABLE 7. DATA ON REFRACTORIES TESTED AND RESULTS OBTAINED

Crucible Material	Melting Atmosphere	Wetting of Grucible by Ti**	Chemical Analysis	Vickers Hardness* (10-Kg. Load)	Metallo- graphic Examination	Grucible Attack at Ti-Refractory Interface
Hot-pressed TiC	Vacuum	Yes	ı	544	Considerable carbide phase present***	No
Hot pressed WC	Vacuum	Yes	0.70% C	315	Ditto	Ditto
Hot pressed ZrC	Vacuum	Yes	ı	283	=	=
Graphite, no argon purification	Argon	Yes	ı	380	z	E
Graphite, purified argon	Argon	Yes	0 . 58%C	252	E	~3()~
TAC lining on graphite crucible	Argon	Yes	Not complete			•
WB lining on graphite crucible	Arbon	Yes	Not complete			

Consequently, hardness values greater than this are caused by contamination when the test ingots were made. If no con-Vickers hardness of the titanium ingot from which the forged-rod melting stock was made was 210. tamination occurred, melting the forged bar would lower the hardness slightly.

***The carbide phase appears in a dendritic patters uniformly distributed throughout the sample.

quantitative decomposition of the sample, since all of the O_2 is to be finally measured as CO_*

Reaction temperatures from 400 - 550 °C. were found to be too low for complete sample decomposition. (It was anticipated that, if it were necessary to operate above 600 °C., it would be impossible to obtain a low blank because of attack on the quartz tube and boat.)

Since other investigators had indicated that the Gl_2 - GCl_4 reaction should proceed quantitatively at 500 - $600\,^{\circ}\mathrm{C}$., it was thought desirable to examine the refractory residues which remained in the boat after reaction. An X-ray diffraction analysis indicated spinels to be present rather than individual oxides. (Particular spinels cannot be positively identified on the evidence of X-ray patterns alone because the structures of many spinels are so similar in both arrangement and size of unit cell.) Since spinels are particularly refractory, it is not surprising that they resist attack at $600\,^{\circ}\mathrm{C}$.

Semiquantitative spectrographic analysis of these same residues indicates the possibility of the following spinels being present:

<u>Spinel</u>	Per Cent
Ti Mg ₂ O ₄	High
Fe Ti O ₄	Medium
Mn Ti O ₄	Low

A quartz reactor was designed for higher temperature investigation (similar to the Pyres reactor described in the previous report).

A series of runs was made at higher temperatures, using both Bureau of Mines powder and DuPont sponge titanium. Results are briefly summarized below:

- 1. Considerable attack is obtained on the sample boat with both fused silica and "Leco HF Series" boats at temperatures from 700 900°C. (in one case, the attack on the boat alone was some ten times the oxide residue obtained from the sample).
- 2. Decomposition of the sample is sufficiently complete at 900°C. but incomplete at 700°C.

Because of the existence of spinels in the titanium residues and the high temperature and resulting high blank necessary for complete reaction, it does not appear feasible to investigate further this method for 0_2 .

A detailed description of the apparatus and techniques used in the Cl₂ - CCl₄ method for oxygen analysis will be included in the next bimonthly report.

The Analysis of Titanium for Oxygen by Vacuum-Fusion Methods

(M. W. Mallett, D. G. Thomas, and C. B. Griffith)

Preliminary experiments at Battelle, as well as observations in the literature, indicate that vacuum-fusion analysis of titanium for oxygen apparently yields low and erratic results. Thermodynamic calculations indicated that no extraordinary difficulty would be encountered in the reduction of titanium oxide although some interference might be expected from vaporization of titanium from the melt and its subsequent sputtering action.

Recently, several laboratories (1,2) have reported successful results with the vacuum-fusion analysis of titanium for oxygen. Therefore, a program was undertaken in which three different modifications of the vacuum-fusion method were used with the same apparatus and operator. This comparison study was made in order to evaluate the three methods in regards to one another, and possibly, to indicate interfering elements in the apparatus design.

Simultaneously, a method was developed in an attempt to circumvent the apparent short comings of the vacuum-fusion analysis. The basis of this process was the use of the isotope 0¹⁸ together with the vacuum-fusion method. The procedure consisted of diluting a known amount of 0¹⁸

⁽¹⁾ Private communication from Dr. G. Derge, Carnegie Institute of Technology, arranged through the courtesy of Dr. Walter A. Findlay, Remington Arms, Co., Inc.

⁽²⁾ Private communication from Mr. E. J. Chapin, Metallurgy Division, Naval Research Laboratory, Washington, D. C.

tracer with the unknown amount of oxygen in the titanium. By extracting the gas from the titanium and determining the new ratio of 018 to 016 with the mass spectrometer, the unknown amount of oxygen can easily be calcustated. Theoretically, this method would yield accurate results even though only a fraction of the oxygen content of a titanium sample was extracted by vacuum-fusion.

A Comparison of Oxygen Values Obtained by Three Modifications of the Vacuum-Fusion Method

Preparation of Standards. In a comparative study of modifications of the vacuum-fusion method, titanium-oxygen standard samples were prepared by two methods. In one, measured volumes of gaseous oxygen were reacted with pieces of Foote Mineral Company iodide titanium at 800°C. in a modified Sieverts apparatus. Each specimen was then held at 800-900°C. for two hours, in an attempt to obtain a homogeneous distribution of the oxygen throughout the metal.

Other titanium-oxygen standards were prepared by drilling small holes in 8-gram pieces of Foote Mineral Company iodide titanium, inserting weighed additions of TiO₂ (C.P., Baker Chemical Company), and plugging the holes with iodide titanium. The specimens were then are melted in a water-cooled copper crucible in an argon atmosphere at 10-cm. absolute pressure, using a tungsten-tipped electrode. The ingot was then turned over and remelted to insure uniform distribution of the oxygen content.

Methods of Analysis. It was decided to analyze the two types of titanium-oxygen standards by three different modifications of the vacuum-fusion method. Following is a description of the procedures used:

Method A. This method was devised at Battelle several years ago for the determination of oxygen in thorium. The procedure consists of dropping the titanium sample into a graphite crucible containing a 1/4-to 1/2-inch-deep layer of graphite chips (1/16-1/8-inch mesh). The crucible and chips had been previously degassed at 2150 - 2200°C. for several hours. In melting, the titanium is dispersed in thin layers between the chips, thus aiding penetration of the metal by the carbon. The most satisfactory rate of reduction was obtained at 1900°C. One to two hours are required for complete gas extraction. After completing the extraction of the first specimen, a fresh lot of degassed graphite chips is dropped before a second specimen is analyzed.

Method B. This procedure gave apparently satisfactory results for Dr. G. Derge of Carnegie Institute of Technology. It consists of degassing, at 1850°C., a bath of iron (25 grams) previously saturated with carbon to prevent erosion of the reaction crucible. Following the degassing period, the temperature is lowered to 1400°C., and 5 grams of tin is dropped and degassed for about 15 minutes. The sample is then dropped and the temperature progressively raised to 1850°C. About thirty minutes to one hour is required to complete the extraction. Additional tin is dropped between specimens.

Method C. The Naval Research Laboratory has reported (2) that satisfactory analyses were obtained by using a graphite crucible containing a quantity of graphite powder. After degassing this set-up, the temperature was lowered to 1800°C. and the sample and several grams of tin were dropped together. They report that an exothermic reaction occurs in the neighborhood of 1600°C., which causes spatter losses if tin is not used to ameliorate the reaction. Gas collection is continued for about one hour. More tin is added with each successive sample.

Although a variable number of samples that can be analyzed successively in one crucible have been reported, only two samples were run for each furnace set-up.

Analytical Results. Figure 14 is a photograph of the vacuumfusion apparatus used in analyzing titanium for oxygen. Tables 8, 9,
and 10 give the complete vacuum-fusion analysis data. A summary of the
oxygen values obtained by the three methods appear in Table 11. These
data show that there is no essential difference in the results of the
three methods. All tend to yield low and erratic results, but,occasionally,
values are obtained which are in reasonable agreement with the known oxygen
additions. In general, in a series of these erratic results, the highest
value obtained on the same material is likely to be the best value. Some
of the highest values have been obtained in the shortest extraction time.
Extending the extraction time beyond that required to return the system
to the original base pressure is useless. No obvious cause of low values
has been observed, except in a few cases where spatter has occurred.

أجن



TABLE 8. VACUUM-FUSION ANALYSIS RESULTS OBTAINED BY METHOD A

										D.::8			
<u>.</u>	<u>.</u>	icht (Weight (Per Cent)		Sample					Number and	Ext	Extraction Tempera-	
Oxygen Addition		%	H2	N2	Weight, Grams	Volume CO	of Gar	s in ml N2	Volume of Gas in ml. S.T.P. CO H2 N2 Total	Dropping Order	Time, Min.	ture,	Sample
0.0		0.001	0.0036	0.001	8.08	0.08	3.21 2.88	0.08	3,36	13 A 15 A	ର ର	1900	I-0-A I-0-B
000	VV	<pre>< 0.001 < 0.001 </pre>	0.0058	1.1	7.21	Lin	4.64	1 1	1 1	7 A 16 A	ନ୍ଦର	1900	IA-0-B IA-0-C ₁
0.02	• •	<0.001 <0.001	0.0068 < 0.001 0.0039 0.004	< 0.001 0.004	7.20	Lin Lin	5.44	Nil 0.25	5.44 3.45	7 B 16 B	ଛ୍ଲ	1900	IA-2-B IA-2-C
0.10		0.0975	0.0092	0.012	3.45 4.745	4.72 0.08	3.54 2.36	0.34	8.60 2.52	6 A 17 A	& %	1900	IA-1-A1 IA-1-G2
0.50 0.50 0.50		0.460 0.111 0.318	0.0083 0.0058 0.0073	0.020 0.029 0.028	2.105 1.79 3.63	13.60 2.79 15.70	1.94	0.34 0.41 0.82	15.88 4.35 19.49	8 B 15 B 17 B	120 70 280	1900 1900 1900	IA-5-A2 1 IA-5-B1 IA-5-B3
0.021		0,003	0.0045	0,003	10.65	0.34	5.31	0.26	5.91	3 A 10 A	30 130	1800 1900	IS-2-A IS-2-C
901.0		0.137	0.0037	900*0>	1.73	3.34	0.72	Lin	7.06	8 A	50	1900	IS-1-B
0.551 0.484 0.521		0.030 0.007 0.016	0.0061 <0.0061 <0.0068	<0.02 0.080 0.021	0.62 0.81 0.934	0.26	0.42	Nil 0.08 0.17	0.68 1.48 1.08	3 B 13 B 10 B	40 30 30	1800 1900 1900	IS-5-B IS-5-D IS-5-E
	1												

A similar quantity of degassed chips A 1/4-1/2" layer of 1/16—inch graphite chips was placed in the crucible. was dropped just prior to dropping the second specimen in each series. Note:

* See key at end of Table 4.

VACUUM-FUSION ANALYSIS RESULTS OBTAINED BY METHOD B TABLE 9.

										Run Number			
Sample* Code	Oxygen	6	ight Per Cent Found Experimentally O2 H2 N2	entally N2	Sample Weight, Grams	Volume CO	of Gas	Volume of Gas in ml. S.T.P. GO H ₂ N ₂ Total	S.T.P. Total	and Dropping Order	Extraction Time, Tem Min. °C	Temp., Sample °C. Code	le le
IA-0-C2	%	0.0137	9€00*0	0.0036 0.0079 6.59	6,59	1,21	2,61	14.0	7.32	18-1	85	1850 Ia-0-C ₂	\ ₂ \
IA-2-D	0.02%	0.001	0•0036	0.0036 0.0076 5.4	5•4	60.0	2.13	0.33	4.61	19-1	9	1850 IA-2-D	Ģ
IA-1-C1 0.1%		0.005	0.0029	0.0029 0.0104 2.955	2.955	0.25	06*0	0.25	3.46	19-2	9	1850 IA-1-C ₁	ပ္ပံ
IA-1-C3 0.1%	0.1%	0.011	0.0019	0.0019 0.1611 2.74	2.74	64.0	69*0	3.79	7.49	20-1		IA-1-C3	က္
IA-5-B2 0.5%		0.088	0,0075	0.0075 <0.005 1.57	1.57	1.93	1.32	nil	3.25	12-2	8	IA-5-B	щ
IA-5-C	0.5%	0.0875	0,0098	0.0098 0.0205 3.085	3.085	3.78	3.35	0.50	9.24	24-2	09	1850 IA-5-C	ပု
IS-2-F	0.02%	0.00227	0,0039	0.0039<0.001 10.21	10.21	0.34	4.38	nil	6.38	23-2	09	1850 IS-2-F	F ₄
IS-1-E	0.1%	0.012	0.0057	0.0057 0.004 2.49	2.49	0.41	1.56	90•0	2.05	12-1	50	1850 IS-1-E	뼌
IS-1-F	0.1%	0.015	0.0042	0.0042 0.0107 1.96	1,96	0.42	0.92	0.17	3.19	24-1	09	1850 IS-1-F	لتبا
IS-5-G	0.5%	0,117	0,0089	0.0089 0.041 0.77	0.77	1.26	92.0	0.25	4.37	23-1	8	1850 IS-5-6	Ŷ
													ı

Note: Approximately 25 grams Fe and 5 grams Sn were present in the crucible when the titanium specimen was dropped. Additional tin was added just prior to dropping the second specimen in a series.

TABLE 10. VACUUM-FUSION ANALYSIS RESULTS OBTAINED BY METHOD C

Springer of the Section of the secti

1

- Walle for the March . Land

	ļ			~	H W	40-	
i)	Sample	IA-0-A	IA-2-A	IA-1-A2 IA-1-B	IA-5-A ₁ IA-5-A ₃ IA-5-A ₄	IS-1-A IS-1-D	IS-5-A IS-5-C IS-5-F
Extraction Tempera-	ture,	1800	1800-1900	1900	1800 1900 1900	1800	1800 1900 1900
	Time, Min.	8	127	9 04	04 09 09	07 70	120 30 80
Run Number and	Dropping Order	5 A	5 B	9 A 4 A	4 B 9 B 11 B	1 A 14 A	2,1 11,8 14,8
ت E D	Total	5.48	8,19	4.73 6.38	3.40 2.79 10.47	1,37	3.41 4.27 4.36
	N ₂	0.17	0.42	0.09	Nil 0.09 0.33	0.09 Nil	0.17 0.08 Nil
6	CO H2 N2 Total	4.80	5.32	3.54 5.02	1.96 1.013 1.40	1.02	0.69 0.82 1.23
1	69	0.51	2,45	1,10	1.44 1.69 8.74	0,26	2.55 3.37 3.13
Sample	Weight, Grams	7.145	7.15	3.76	1.865 1.47 1.40	2.04	0.880 0.77 0.810
	N2	0,003	0.007	0.003	<0.006 0.007 0.0294	0.005	0.024 0.013 <0.010
Per Cent	H2	0,005 0,0060	0,0067	0.0085	0.0094 0.0062 0.0090	0.0045	0.0070 0.0096 0.0014
Weight (Per Cent)	02	0.005	0.024	0.027	0.055 0.082 0.445	0.009	0.207 0.312 0.275
73	Oxygen Addition	0*0	0,02	0.10	0.50	0.170 0.113	0.589 0.496 0.505
	Sample* Code	IA-0-A	IA-2-A	IA-1-A2 IA-1-B	IA-5-A1 IA-5-A3 IA-5-A4	IS-1-A IS-1-D	IS-5-A IS-5-C IS-5-F

A 1/4-inch layer of -60 mesh graphite powder was present in the crucible during degassing. A similar quantity of 1/16-inch graphite chips was added between samples. This larger particle size was used to facilitate dropping. Five grams of tin was dropped simultaneously with each titanium specimen. Note:

* See key at end of Table 4.

TABLE 11. COMPARISON OF RESULTS BY THREE MODIFICATIONS OF THE VACUUM-FUSION METHOD

		•	Per Cent Oxygen	
Sample** Code	Oxygen Addition	Method A	Method B	Method C
I-O-A	0	0.001		
I-O-B	0	0.001		
IA-O-A	0			0.005
IA-0-B	0	<0.001		
IA-O-Cl	0	<0.001		
IA-0-C ₂	0		0.013	
IA-2-A	0.02			0.024
IA-2-B	0.02	<0.001		
IA-2-C	0.02	<0.001		
IA-2-D	0.02		0.001	
IA-1-A	0.10	0.098		
IA-1-A2	0.10			0.027
IA-1-B	0.10			0.010
IA-1-C1	0.10		0.006	
IA-1-C2	0.10	0.001		
IA-1-C3	0.10		0.012	
IA-5-A ₁	0.50			0.055*
IA-5-A2	0.50	0.460		
IA-5-A3	0.50			0.082*
IA-5-A4	0.50			0.445
IA-5-Bi	0.50	0.111	00	
IA-5-B ₂ IA-5-B ₃	0.50	0 27.0	0.088	
IA-5-C	0•50 0•50	0.318	0.088	
IS-2-A	0.021	0.003	0.000	
IS-2-C	0.019	0.001		
IS-2-F	0.020	••••	0.002	
IS-1-A	0.170			0.009
IS-1-B	0.106	0.137		
IS-1-D	0.113			0.073
IS-1-E	0.101		0.012	
IS -1- F IS-5-A	0.106 0.589		0.015	0.207
IS-5-B	0.551	0.030		0.401
IS-5-C	0.486			0.312
IS-5-D	0.484	0.007		U # _/ da.fi.
IS-5-E	0.521	0.016	v.	
IS-5-F	0.505		,	0.275
IS-5-G	0.504		0.117	•

Footnotes on following page.

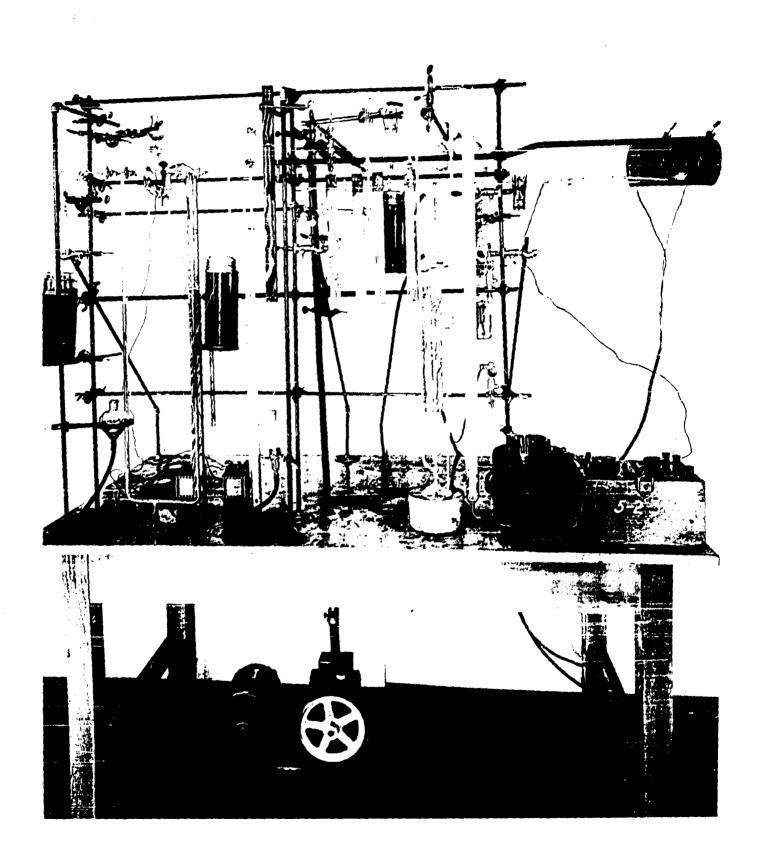
Footnotes for Table 11:

- * Some spatter loss was observed during melt down of these specimens.
- ** Key to Sample Code. Sample code numbers are of the form IX-N-Yn where:
 - I indicates that the starting material was iodide-process titanium,
 - X = blank, indicates there was no further treatment of the sample,
 - X = A, indicates that the sample was arc melted (those samples containing a known amount of oxygen were made from a Ti-TiO₂ mixture),
 - X = s, indicates that the oxygen was added as gas in a Sieverts apparatus,
 - N = 0, indicates that no oxygen addition was made to the sample,
 - N = 2, indicates a 0.02 wt. % oxygen addition,
 - N = 1, indicates a 0.10 wt. % oxygen addition,
 - N = 5, indicates a 0.50 wt. S oxygen addition,
 - Y = A,B,C, indicates the various samples in a series, and
 - n = 1,2,3, indicates the various sections of sample Y.

However, two modifications on the vacuum-fusion apparatus are being made to eliminate possible sources of error. In order to increase the pumping speed, a 10-inch-long by 3/4-inch-diameter guide tube will be removed from between the vacuum-fusion crucible and the pump. Also, the furnace tube will be water cooled to keep any titanium that has been evaporated from the vacuum-fusion crucible onto the furnace tube wall below the temperature for reaction with the evolved gases. At the present point in this investigation, the trends are as follows. The arc-melted specimens tend to yield somewhat higher values than Sieverts samples of the same oxygen level. Whether this is due entirely to the analysis method or, in part, to the manner of preparing the oxygen alloy is not known. The higher the extraction temperature, the better: 1900°C. was generally used. The gas-extraction period should be continued at least one hour. and in some cases may require three to four hours. Because of the long extraction period, the system must be degassed for a long time to minimize the volume of blank gases. No more than two specimens should be analyzed successively, and possibly further work will show that a single run per furnace set-up is all that can be tolerated.

<u>Vacuum-Fusion - Mass-Spectrograph</u> <u>Method of Determining Oxygen in Titanium</u>

It was suggested that by use of 0¹⁸ tracer an absolute determination of the amount of oxygen in a sample of metal could be made.


The one major assumption involved is that the oxygen tracer added to the sample distributes itself in the same manner as the unknown amount of oxygen already present in the sample and, accordingly, that the vacuum-fusion extraction can remove the tracer oxygen in the same ratio that it exists in the titanium metal sample.

Apparatus. The 0^{18*} was available as H₂O enriched to 1.5% H₂O^{18**}. Before the tracer could be reacted with the titanium, the water had to be broken down. The decomposition of the water and a separation of the hydrogen from oxygen could be affected quite easily by an electrolysis procedure. Therefore, the reaction apparatus was designed to produce the 0¹⁸ by this method, and to enable transfer of the gas from the electrolysis cell to the reaction furnace without opening the system to the air.

Figure 15 is a photograph of this apparatus and Figure 16 a schematic diagram. The electrolysis unit located on the extreme left of the system was made up of a closed storage container, D, to hold the enriched water during evacuation of the system; an electrolysis cell, E, connected to the system by taper-joints, and with its two arms interconnected by a stopcock; a storage tube, F, of 10-mm. I.D. for the hydrogen, and storage tube, G, 7-mm. I.D., for the oxygen. Since the volume of hydrogen given off was twice that of the oxygen, the ratio of the tube diameters had to be as the square root of two is to one, if only one leveling bulb was to be used to control the pressure in the electrolysis system.

^{*} Natural oxygen contains 0.204% 018.

^{**} Available through AEC from Stuart Oxygen Co., 211 Bay St., San Francisco.

64388

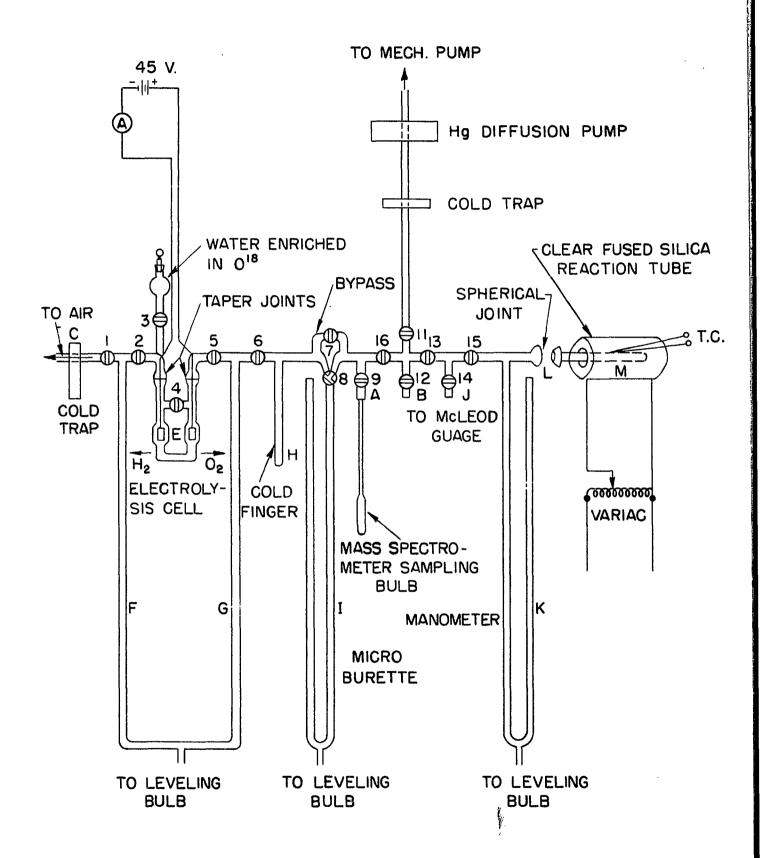


FIGURE 16. OIS ISOTOPIC REACTION APPARATUS

The cold finger, H, dried the electrolyzed oxygen as it was moved over into the storage micro burette, I. The by-pass above I was used in evacuating the system before starting the electrolysis. A mass-spectrometer sampling tube was inserted in the system at Tube A, immediately after the storage burette, in order to obtain a sample of the oxygen gas as electrolyzed. The original ratio of $0^{18}/0^{16}$ in the oxygen gas added to the titanium was determined from this sample. The manometer, K, gives qualitative information on the progress of the absorbtion of the oxygen addition by the titanium, while the McLeod gauge, J, gives a final indication of the completeness of the reaction. The reaction tube, M, of clear fused silica, connects to the system by means of a standard ball joint.

After preliminary runs, it was found that over 95 per cent of the extracted gas was hydrogen, which made it extremely difficult to run a mass-spectrometer analysis. Therefore, a combination gas-concentration and gas-loading apparatus was constructed as shown in Figure 17. The gas sample from the vacuum-fusion apparatus is transferred to the burette, B, under mercury at A. The side-arm contains a palladium tube, C, and a mass-spectrometer sampling tube at D. Suitable arrangements are provided to evacuate the system by means of a mercury-diffusion pump.

Experimental Procedure. To start a run, the system was cleaned and dried, all stopcocks were checked, and a weighed sample of titanium was placed in the reaction tube. The electrolysis cell as well as all the other parts of the system was then evacuated and checked for leaks. When no leaks were observed, Stopcocks 2 and 5 were closed and Stopcock 4 was

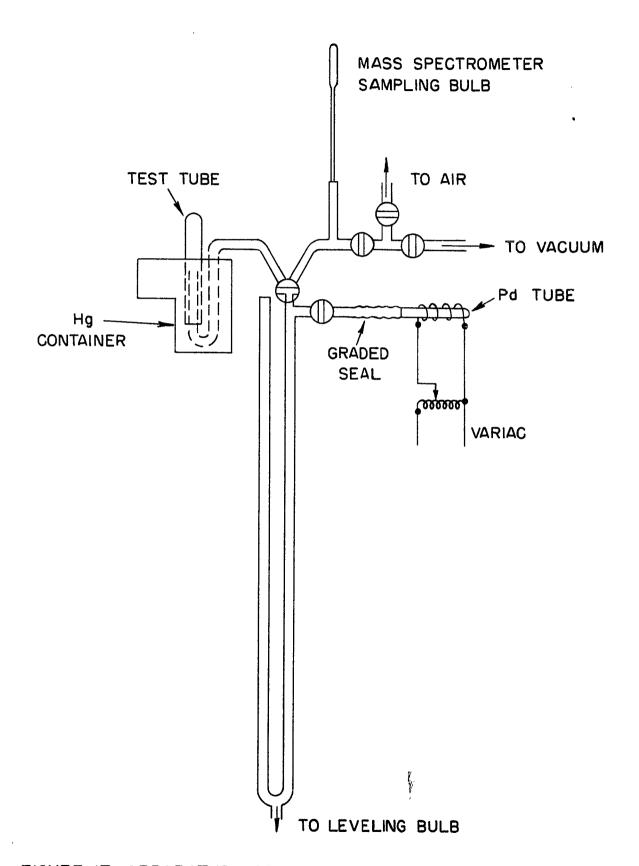


FIGURE 17. APPARATUS FOR CONCENTRATION AND LOADING OF MASS SPECTROMETER SAMPLE

opened. Water was added to the cell, E, from the reservoir, D. Stop-cocks 4 and 6 were closed and Stopcocks 2 and 5 were opened. The mercury level in Tubes F and G had been as high as possible but fell when Stopcocks 2 and 5 were opened, because of the vapor pressure of the water. The leveling bulb was used to keep the level of mercury as high as possible.

Because there was a very low pressure on the system when the electrolysis was first started, the bubbles of generated gas were very large. The operation of the electrolysis cell was most difficult at this stage.

When atmospheric pressure was reached in Tubes F and G, Stopcock 1 was opened and the electrolysis was continued until Tube G was filled with oxygen. Stopcock 7 was closed and Stopcocks 6 and 8 were opened after sufficient oxygen had been produced and the gas in Tube G was transferred to the micro-burette, I.

Meanwhile the sample of titanium had been outgassing at 750°C. in the reaction tube, M. Stopcocks 11 and 15 were then closed and a known amount of oxygen was allowed to leave Burette I. Stopcock 8 was closed and Stopcock 15 was opened and the oxygen was allowed to react with the titanium at 800°C. until the system had returned to the base pressure, and for two additional hours. At the end of this time, the titanium sample was cooled quickly and removed from the reaction vessel. It was then ready for extraction in the vacuum-fusion apparatus.

After the oxygen tracer had been added to the titanium and a good vacuum had been reached once more, Stopcock 13 was closed, the microburette was filled, and Stopcock 9 was opened. The electrolyzed oxygen was transferred to the mass spectrometer sampling tube at A at a pressure of 65 to 70 cm. of mercury. The thin glass tube was then sealed off with a flame. This served as a base giving the original ratio, $0^{18}/0^{16}$, of the enriched oxygen addition.

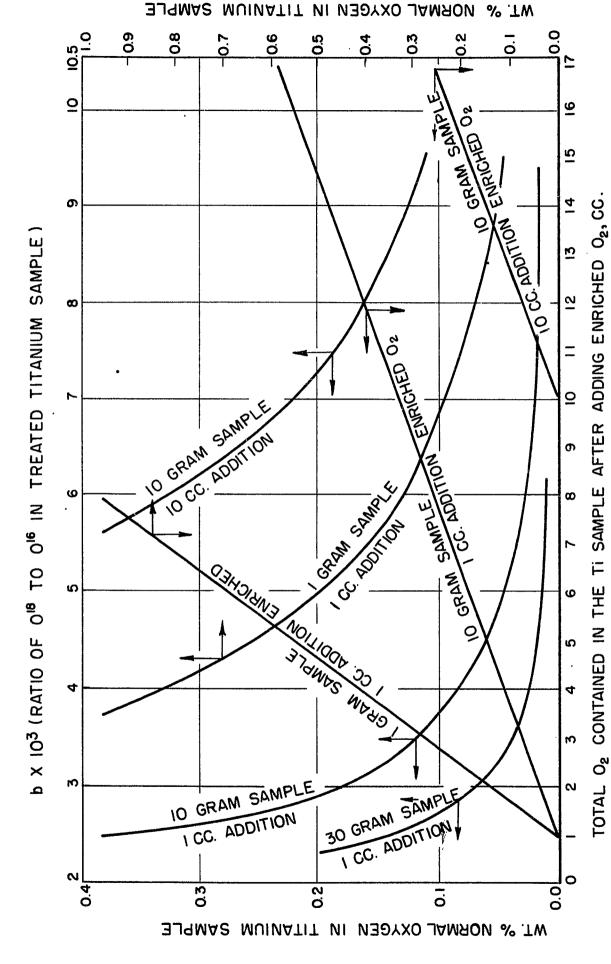
Upon extraction from the titanium by vacuum-fusion, the gas was transferred to the apparatus (Figure 15) for loading mass-spectrometer sampling bulbs. All the spectrometer bulbs were carefully packed and shipped to the National Bureau of Standards where the ratio of $0^{18}/0^{16}$ was determined through the courtesy of Dr. F. L. Mohler.

<u>Calculations.</u> Results obtained from the National Bureau of Standards indicated the percentage of 0^{18} in the total oxygen from which data the ratio of $0^{18}/0^{16}$ was readily calculated. If the ratio of $0^{18}/0^{16}$ is "b", the per cent of 0^{18} in the electrolyzed oxygen "a", the volume of enriched oxygen added to the sample x, and the volume of normal oxygen in the sample y, then

$$b = \frac{\text{vol. } 0^{18}}{\text{vol. } 0^{16}} = \frac{\text{ax + 0.204y}}{(100-a)x + 99.796y}, \tag{1}$$

assuming that normal oxygen contains 0.204 per cent 0^{18} . This equation can be rearranged to give:

$$y = \frac{ax - (100-a) bx}{99.796b - 0.204}$$
 (2)


Preliminary calculations were made in an attempt to determine the optimum sample weight and amount of oxygen tracer to be added. Figure 18 and Table 12 show the relationship of the weight of titanium sample, the volume of enriched ($0^{18} = 7.7 \times \text{normal}$) oxygen added to the titanium, the total volume of enriched and normal oxygen contained in the metal after addition, the ratio b of 0^{18} to 0^{16} present in the treated sample, and the weight per cent of normal oxygen originally present in the titanium sample.

Because perhaps only 50 to 60% of the oxygen is extracted by vacuum fusion, a small error (3%) may result due to mass difference effects of 0^{18} and 0^{16} .

It will be noted (see Figure 18) that the addition of 1 cc. of enriched oxygen to a 1-gram sample of titanium is the most versatile combination of conditions. The entire range of analyses from 0.1 to 1.0 weight per cent oxygen is obtainable with reasonable precision. The use of large additions, such as 10 cc. of enriched oxygen, shows no advantage and, in fact, may cause trouble because of the large volumes of evolved gas to be handled.

On the graph, the total oxygen of a sample is recorded as 0_2 . However, in the vacuum-fusion extraction the oxygen will be evolved as 0_2 , and so the potential total volume of 0_2 in the other hand, only about 0_2 of the potential gas will be recovered, so the volume of 0_2 indicated may be considered as the volume of 0_2 likely to be collected during vacuum fusion of the sample.

Examination of the curves shows that greater precision is obtained at the higher values of the ratio b. In the sections where the curves approach the vertical, precision is rather poor.

- 51 -

FIGURE 18. DATA FOR USE IN THE ANALYSIS OF TITANIUM FOR OXYGEN BY TREATMENT O18-ENRICHED (7.7 NORMAL) OXYGEN WITH

TABLE 12. CALCULATED DATA ON THE ANALYSIS OF TITANIUM FOR OXYGEN BY THE ADDITION OF Old ENRICHED OXYGEN*

Ratio b	Volume 018 Added	Volume 016 Found, cc.	Normal Oxygen in Titanium, Wt, %
(In State of the S	Calculations	Based on a One-Gram Sa	umple
0.0030	1	12.00	1.710
0.0035	1	7.67	1.095
0.0040	1	5•50	0•785
0.0050	1 1 1	3.34	0.476
0.0060	l	2•25	0.321
0.0070	1	1.60	0.228
0.0095	1	0•735	0.105
0.00249	10	5-47	0.0780
0.00250	10	5•44	o . 07 7 8
0.00251	10	5.42	0.0773
	Calculations	Based on a Ten-Gram Sa	ample
0.0024	1	31.5	0.45
0.0025	1	25•5	0•357
0.0029	1 1 1 1 1	13.45	0.192
0.0036	1	7.12	0.105
0.0095	1	0.735	0.0105
0.00350	1	7.67	0.1095
0.00360	1	7.12	0.1015
0.00370	ı	6.65	0.0950
0.0025	10	250.0	•••
0.0030	10	120.0	1.700
0.00514	10	31.50	0.450
0.0060	10	22.40	0.320
0.00800	10	11.65	0.166
0.00900	10	8.57	0.122
0.00965	10	7.00	0.100
0.010	10	6.25	0.039
	Calculations	Based on a Thirty-Gra	m Sample
0.0023	1	42.3	0.201
0.0024	1	31.5	0.150
0.0025	1	25.5	0.119
0.0029	1	13.45	0.061
0.0030	1 1 1 1	12.00	0.057
0.0035	ī	7.67	0.036
0.0045	ī	4.2	0.02
0.0062	ī	2.1	0.01

Footnote on following page.

Footnote for Table 12:

* The calculations were made using the approximation

$$b = \frac{1.5x + 0.2y}{100x + 100y}$$

where x is the volume of enriched oxygen added to the sample of titanium and y is the unknown volume of normal oxygen present in the titanium.

Where the oxygen content is known to be low (<0.1%), it is advantageous to increase the sample weight to 10-30 grams.

Data in the Segré chart indicate that the mass spectrograph can measure the ratio, b, to ±0.01%. If this is true, the precision of the method is about ±7% at the worst and becomes much better at higher b values.

In the interest of conserving time, the calculations were based on the approximation

$$b = \frac{1.5x + 0.2y}{100x + 100y}$$
 (3)

rather than the exact

$$b = \frac{1.57x + 0.204y}{98.43x + 99.796y}$$
 (4)

Experimental Results. Oxygen -18 tracer was added to four specimens of titanium. Samples of electrolyzed oxygen were taken after treatment of each of the first and second titanium specimens. Table 13 summarizes the physical properties of the titanium samples before and after the oxygen addition and homogenization. The oxygen was removed from the specimens by the vacuum-fusion method and the gas was transferred, as extracted, to the mass-spectrometer sampling bulbs.

The mass-spectrometer analysis indicated that there was about 1% N_2 and less CO_2 in the gas samples. However, there was 95% or more hydrogen in the sample, so that it was impossible to obtain enough CO in the spectrometer for good sensitivity. Apparently, as much as 50% H_2

TABLE 13. SUMMARY OF PHYSICAL PROPERTIES OF TITANIUM SAMPLES TO WHICH OXYGEN-18 TRACER WAS ADDED

		Volume O ¹⁸		
		Tracer	Description	
Sample Number	Weight, Grams	Added, cc, S.T.P.	Before Oxygen Addition	After Oxygen Tracer Addition
R-1	5.15	2.30	Iodide titanium; mas- sive, bright, and shiny.	Two dark spots on side next to reaction tube.
R-2	0.80	2.30	Bur. of Mines; -10+20 mesh, 0.1% normal oxygen previously add	-
R-3	2.36	2.30	Same as R-2.	Silica tube coated with black, brown, and mirror stains, sample unchanged.
R-4	4.10	2.30	Iodide titanium; mas- sive, bright, and shiny.	Dull grey coating on outside.

would not cut down the precision of the analysis, and it was suggested that the amount of hydrogen be reduced to at least that level in succeeding samples. Accordingly, the gas-concentration and gas-loading apparatus shown in Figure 15 was constructed.

Gas samples from the vacuum-fusion apparatus will be transferred to the storage burette and there the hydrogen diffused out through the palladium tube. In preliminary tests, 5 cc. of pure hydrogen were admitted to the palladium tube and in 7 minutes at 300°C. the system was back to a vacuum.

The tabulated results from the Bureau of Standards are given in Table 14. The results given in the column headed "Total" are the results that are used in the calculations. The average value of the per cent 0¹⁸ of Samples B-1 and B-2 corresponds to the term "a" in Equation 1, x = 2.30 cc., and "t" for each sample is obtained by dividing the figure in the "Total" column by 100 minus the value. For example, Sample R-4 may be calculated as follows:

$$b = \frac{0.568}{100-0.568} = \frac{(0.0151)(2.3) + (0.00219y)}{(0.99432)(2.3) + 0.99780y}$$
(5a)

$$0.00573 = \frac{(0.0347) + (0.00219y)}{(2.29) + (0.99780y)}$$
 (5b)

$$y = \frac{0.0216}{0.00351} = 6.15 \text{ cc.}$$
 (5c)

The results of these calculations are given in Table 15. It can be seen that the results are high by a factor of about 20. Whether the hydrogen alone was responsible for this, or whether there was a leak in the system due to faulty technique in the preliminary runs, has not been determined.

TABLE 14. MASS-SPECTROMETER RESULTS FROM NATIONAL BUREAU OF STANDARDS

Sample	Volume,	Fer Cent O ^{18*}	Atom Per Cent 018
Number	Total	Standard(a)	Excess over Standard
B -1	1.517	0.219	1.29 ₈ ± 0.005(b)
B - 2	1.508	0.219	1.289 ± 0.004
R-1		Sample practically a	ll hydrogen
R -2	0.381	0.219	0.162 ± 0.003
R-3	0.241	0.219	0.022 ± 0.002
R-4(c)	0.568	0.219	0.349 ± 0.004

Based on total oxygen content of gas sample.

Note: (a) Oxygen from air.

⁽b) Average deviation from the mean. Mean values are based on at least ten repeated measurements.

(c) High per cent of hydrogen in sample would alter calculations.

TABLE 15. PRELIMINARY RESULTS OF ANALYSIS OF TITANIUM SAMPLE FOR OXYGEN BY THE Ol8 ISOTOPIC METHOD

Sample Number	Titanium Weight, Grams	(olume Normal O2 Originally in Sample (Mass Spectrometer), cc, S.T.P.	Weight % 0 ₂ in Sample	Duration of Homogenizing Treatment
R-1	5.15	Todide titanium	Too much hydrogen	(-5	750°C. 13 hours
R-2	0.80	Bureau of Mines 0.1% normal oxygen added	, 16.0	2.85%	800°C. 2 hours
R-3	2•36	Same as R-2	146.0	-	750°C. 2 hours
R-4	4,10	Iodide titanium	6.15	0.214%	750°C. 2-1/2 hours

The gas-concentration and gas-loading apparatus having been completed, samples can now be prepared in which there is little or no hydrogen and so more favorable results are to be expected in future experiments.

FUTURE WORK

The work on the preparation and evaluation of alloys of titanium will be continued. At present, binary alloys of titanium with zirconium, columbium, tantalum, beryllium, and silver, and ternary titanium-manganese-carbon, titanium-manganese-vanadium, and titanium-molybdenum-tungsten alloys are being investigated.

The more promising compositions which have been made to date will shortly be again investigated in order to study further these compositions and select those alloys warranting a more extensive study as outlined in the proposal.

The study of refractories for melting titanium will be continued.

With reference to the Cl₂ - CCl₄ method for determining oxygen, no further tests are contemplated. A detailed description of the apparatus and techniques, however, will be included in the next bimonthly report.

At the present time, arc-melted samples of iodide titanium with known amounts of oxygen added as TiO₂ are being prepared. These samples will be forwarded to Dr. G. Derge for vacuum-fusion analysis in his laboratory.

Upon the completion of certain modifications of the vacuum-fusion apparatus, spot checks will be run on Methods A, B, and C, in hopes that the yield of extracted gas will be improved.

The gas-concentrating and loading apparatus has been completed and tested. The gas extracted by vacuum-fusion analysis from samples processed in the 0¹⁸ apparatus will contain large amounts of hydrogen. This hydrogen will be removed from future samples in the gas-concentration and loading apparatus before sending to the Bureau of Standards. However, all work on the 0¹⁸ analysis method is being held in abeyance until the results of Dr. Derge's analysis of the Ti-TiO₂ samples, prepared at Battelle, are obtained.

The data on which this report is based are listed in the following BMI Notebooks:

No. 3911, pp. 66-78

No. 3912, pp. 5-11

No. 4519, pp. 39-98

No. 4728, pp. 1-5

No. 4112, pp. 90-91

No. 4736, pp. 2-10

pp. 35-43

No. 4461, pp. 18-22

pp. 32-34

pp. 39-60

pp. 63-84

pp. 90-100

No. 4505, pp. 2-61

No. 733

LWE:ec/mk/ma September 14, 1949

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS AERONAUTICAL SYSTEMS CENTER (AFMC)
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

29 Jan 10

88 CS/SCOKIF (FOIA) 3810 Communications Blvd Wright-Patterson AFB OH 45433-7802

Defense Technical Information Center Attn: Ms. Kelly Akers (DTIC-R) 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir VA 22060-6218

Dear Ms. Akers

This concerns the following Technical Report:

Technical Report number: ADB816506

Technical Report Title: Research and Development on Titanium Alloys

Technical Report Date: 31 Aug 49

Previous classification/distribution code: UNCLAS

Subsequent to WPAFB FOIA Control Number 2010-01928-F, the above record has been cleared for public release.

The review was performed by the following Air Force organization: AFRL/RX and 88 ABW/IPI.

Therefore, the above record is now fully releasable to the public. Please let my point of contact know when the record is available to the public. Email: darrin.booher@wpafb.af.mil If you have any questions, my point of contact is Darrin Booher, phone DSN 787-2719.

Sincerely,

KAREN COOK

Freedom of Information Act Manager Base Information Management Section

Knowledge Operations

2 Attachments

- 1. Citation & Cover sheets of Technical Report #ADB816506
- 2. Copy of AFMC Form 559